Richard Hallstein - PHY 231C - Introductory Physics I -

Exam1

Your code is:

Put your name here:

Keep this exam CLOSED until advised by the instructor.
60 minute long closed book exam.
Fill out the bubble sheet: last name, first initial, student number, section number and code.

A two-sided 8.5 by 11 handwritten help sheet is allowed.
When done, hand in your test and your bubble sheet.
Thank you and good luck!
Possibly useful constants:

- $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
- $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
- $\sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}^{4}\right)$
- $\mathrm{R}=0.0821 \mathrm{~L}^{*} \mathrm{~atm} /\left(\mathrm{mol}^{*} \mathrm{~K}\right)=8.31 \mathrm{~J} /\left(\mathrm{mol}^{*} \mathrm{~K}\right)$

Possibly useful Moments of Inertia:

- Solid homogeneous sphere: $\mathrm{I}_{C M}=(2 / 5) \mathrm{MR}^{2}$
- Thin spherical shell: $\mathrm{I}_{C M}=(2 / 3) \mathrm{MR}^{2}$
- Thin uniform rod, axis perpendicular to length: $\mathrm{I}_{C M}=$ $(1 / 12) \mathrm{ML}^{2}$
- Solid homogeneous cylinder, axis through center of mass and parallel to length: $\mathrm{I}_{C M}=(1 / 2) \mathrm{MR}^{2}$

Richard Hallstein - PHY 231C - Introductory Physics I -
Virtual University(summer 05)

4 pt Identify the statements as being either True or False.
\triangleright A dimensionally correct equation must be correct.

1. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright A dimensionally incorrect equation may be correct.
2. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

$12 p t$

Choose the correct SI units for the function of x, v, a, t, and m given.
A. $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$
B. $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
C. $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$
D. $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$
E. $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{3}$
F. $\mathrm{kg} \cdot \mathrm{m}^{2}$
G. $\mathrm{m} /(\mathrm{s} \cdot \mathrm{kg})$
H. $\mathrm{m} / \mathrm{s}^{2}$
$\triangleright \mathrm{v} / \mathrm{m}$

\triangleright a (acceleration)

$\triangleright \mathrm{mv}$

$\triangleright \mathrm{mv}^{2} / \mathrm{t}$
6. $\mathbf{A} \bigcirc \mathrm{A} \quad \mathbf{B} \bigcirc \mathrm{B} \quad \mathbf{C} \bigcirc \mathrm{C} \quad \mathbf{D} \bigcirc \mathrm{D} \quad \mathbf{E} \bigcirc \mathrm{E} \quad \mathbf{F} \bigcirc \mathrm{F}$ $\mathbf{G} \bigcirc \mathrm{G} \quad \mathbf{H} \bigcirc \mathrm{H}$

Richard Hallstein - PHY 231C - Introductory Physics I -
Virtual University(summer 05)
Exam1

Consider the pulley system above which is holding the mass M in equilibrium. Assume each pulley is massless.

$$
\begin{aligned}
\triangleright T_{B} & \text { is } \\
\mathbf{7 .} & \mathbf{A} \bigcirc \text { equal to } \mathbf{B} \bigcirc \text { greater than } \\
& \mathbf{C} \bigcirc \text { less than } \\
\triangleright T_{A} & +T_{B} \text { is } \\
\mathbf{8 .} & \mathbf{A} \bigcirc \text { equal to } \mathbf{B} \bigcirc \text { greater than } \\
& \mathbf{C} \bigcirc \text { less than } \\
\triangleright T_{A} & \text { is } \\
\mathbf{9 .} & \mathbf{A} \bigcirc \text { equal to } \mathbf{B} \bigcirc \text { greater than } \\
& \mathbf{C} \bigcirc \text { less than } \\
\triangleright T_{D} & \text { is } \\
\mathbf{1 0} . & \mathbf{A} \bigcirc \text { equal to } \\
& \mathbf{C} \bigcirc \text { less than }
\end{aligned}
$$

You are correct. Your receipt is 154-1031

9 pt There are 1,609 meters in one mile. How far in miles would a schoolbus go in 3 hours, 10 minutes at $30 \mathrm{~km} / \mathrm{h}$?

11.A $\bigcirc 47$	$\mathbf{B} \bigcirc$	59	$\mathbf{C} \bigcirc 74$	$\mathbf{D} \bigcirc 92$	
$\mathbf{E} \bigcirc$	115	$\mathbf{F} \bigcirc$	144	$\mathbf{G} \bigcirc 180$	$\mathbf{H} \bigcirc$

$9 p t$ An object, at the top of a very tall building, is released from rest and falls freely due to gravity. Neglect air resistance and calculate the distance which the object covers between times $\mathrm{t}_{1}=4.15 \mathrm{~s}$ and $\mathrm{t}_{2}=6.25 \mathrm{~s}$ after it is released.
(in m)

$$
\begin{array}{rlll}
\text { 12. } \mathbf{A} \bigcirc 4.55 \times 10^{1} & \mathbf{B} \bigcirc 6.06 \times 10^{1} & \mathbf{C} \bigcirc & 8.05 \times 10^{1} \\
\mathbf{D} \bigcirc 1.07 \times 10^{2} & \mathbf{E} \bigcirc 1.42 \times 10^{2} & \mathbf{F} \bigcirc & 1.89 \times 10^{2} \\
\mathbf{G} \bigcirc 2.52 \times 10^{2} & \mathbf{H} \bigcirc 3.35 \times 10^{2} & &
\end{array}
$$

Richard Hallstein - PHY 231C - Introductory Physics I Virtual University(summer 05)
$9 p t$ Two balls are thrown simultaneously with the same speed of $39 \mathrm{~m} / \mathrm{s}$. The first ball is thrown at an angle of 33° relative to the horizontal. The second ball is thrown at an angle of 57° relative to the horizontal. Select True or False for the following statements.
\triangleright The first ball has a lower speed at its maximum height.
13. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright The second ball has a greater range than the first ball.
14. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright Both balls have the same acceleration during their flight.
15. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
$9 p t$ A boy standing on top of a building throws a small ball from a height of $\mathrm{H}_{1}=49.0 \mathrm{~m}$. (See figure.) The ball leaves with a speed of $26.9 \mathrm{~m} / \mathrm{s}$, at an angle of 65.0 degrees from the horizontal, and lands on a building with a height of $\mathrm{H}_{2}=$ 11.0 m . Calculate for how long the ball is in the air. (Neglect air friction, and use $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.)

9 pt A fireman, 24.6 m away from a burning building, directs a stream of water from a ground level fire hose at an angle of 47.0° above the horizontal. If the speed is $43.2 \mathrm{~m} / \mathrm{s}$, at what height will the stream of water hit the building?
(in m)

$$
\begin{array}{rlll}
\mathbf{1 7 . A} \bigcirc 1.68 \times 10^{1} & \mathbf{B} \bigcirc 1.96 \times 10^{1} & \mathbf{C} \bigcirc 2.30 \times 10^{1} \\
\mathbf{D} \bigcirc 2.69 \times 10^{1} & \mathbf{E} \bigcirc & 3.14 \times 10^{1} & \mathbf{F} \bigcirc \\
\mathbf{G} \bigcirc 4.68 \times 10^{1} \\
4.30 \times 10^{1} & \mathbf{H} \bigcirc & 5.03 \times 10^{1} &
\end{array}
$$

Richard Hallstein - PHY 231C - Introductory Physics I Virtual University(summer 05)
Exam1
$9 p t$ Identify the statements as being either True or False.
\triangleright Two blocks are released from the top of a building. One falls straight down while the other slides down a smooth ramp. If all friction is ignored, the block that went straight down will have a smaller speed when it reaches the bottom than the block that went down the ramp will have when it reaches the bottom.
18. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright A train moves at a constant speed of 60 mph . A cannon is stationed on a flatcar moving with the train. The cannon has a muzzle velocity of 120 mph . If the gunner aims the cannon straight up and fires a cannonball, the kinetic energy of the cannonball at its highest point will be zero.
19. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright A force of 5.0 N is applied to a 20 kg mass on a horizontal frictionless surface. As the speed of the mass increases at a constant acceleration, the power delivered to it by the force increases.
20. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

On a roller coaster ride the total mass of the cart - with passengers included - is 280 kg . Peak \mathbf{K} is at 43.5 m above the ground, peak \mathbf{L} is at 28.0 m . The speed of the cart at \mathbf{K} is $17.8 \mathrm{~m} / \mathrm{s}$, at \mathbf{L} it is $12.8 \mathrm{~m} / \mathrm{s}$. (The wheel mechanism on roller coaster carts always keeps the carts safely on the rail.)

9 pt How much energy is lost due to friction between the two peaks?
(in J)

$$
\begin{array}{rlll}
\mathbf{2 1 . A} \bigcirc 4.67 \times 10^{4} & \mathbf{B} \bigcirc 5.47 \times 10^{4} & \mathbf{C} \bigcirc 6.40 \times 10^{4} \\
\mathbf{D} \bigcirc 7.49 \times 10^{4} & \mathbf{E} \bigcirc & 8.76 \times 10^{4} & \mathbf{F} \bigcirc 1.02 \times 10^{5} \\
\mathbf{G} \bigcirc 1.20 \times 10^{5} & \mathbf{H} \bigcirc 1.40 \times 10^{5} & &
\end{array}
$$

Richard Hallstein - PHY 231C - Introductory Physics I -
Virtual University(summer 05)
7
Exam1
$9 p t$ Two masses $\mathrm{M}_{1}=3.00 \mathrm{~kg}$ and $\mathrm{M}_{2}=7.10 \mathrm{~kg}$ are stacked on top of each other as shown in the figure. The static coefficient of friction between M_{1} and M_{2} is $\mu_{s}=0.370$. There is no friction between M_{2} and the surface below it. What is the maximum horizontal force that can be applied to M_{1} without M_{1} sliding relative to M_{2} ?

$\mathbf{2 2} . \mathbf{A} \bigcirc 8.41$	$\mathbf{B} \bigcirc 9.50$	$\mathbf{C} \bigcirc 1.07 \times 10^{1}$	
$\mathbf{D} \bigcirc 1.21 \times 10^{1}$	$\mathbf{E} \bigcirc 1.37 \times 10^{1}$	$\mathbf{F} \bigcirc 1.55 \times 10^{1}$	
$\mathbf{G} \bigcirc 1.75 \times 10^{1}$	$\mathbf{H} \bigcirc 1.98 \times 10^{1}$		

