Homework Set 1

General homework instructions:

Students may work together, but may not turn in identical homework solutions. Each student must write his/her solutions independently.

On calculations: show your work, legibly. Just giving the final result will not earn credit --- show how you obtained the result.

On Essay Questions: students may work together and may obtain information from the Internet. However, each student must write an independent essay in his/her own words. Cut-and-Paste from the Internet is <u>forbidden</u>. Directly quoting from sources (with or without footnotes) is also <u>forbidden</u>.

Exercises: due Wednesday 9/9

E1. The velocity of an electromagnetic wave in empty space is c, with $c = 1/\sqrt{\mu_0 \varepsilon_0}$. What are the values of μ_0 (permeability) and ε_0 (permittivity) of empty space? Using these values, calculate c.

E2. Consider this electromagnetic wave:

$$\mathbf{E}(\mathbf{x},t) = \hat{\mathbf{i}} \ f(z-ct) \text{ and } \mathbf{B}(\mathbf{x},t) = \hat{\mathbf{j}} \ f(z-ct)/c$$
where $f(\zeta) = A\sin\left(\frac{2\pi\zeta}{\lambda}\right) \exp\left(-\zeta^2/a^2\right)$

for some parameters λ and a. Assume a is large compared to λ .

- (a) Sketch a graph of $E_x(z,0)$ (i.e., let x = y = 0 and t = 0).
- (b) Sketch a graph of $E_x(z,t)$ for $t=10\lambda/c$.

Your sketches should be qualitatively correct.

E3. (a) Define "dielectric". (b) List 5 examples of dielectric materials.

Problems: due Wednesday 9/9

P1. The energy densities of the electric and magnetic fields are

$$u_E = \frac{\varepsilon_0}{2} E^2$$
 and $u_M = \frac{B^2}{2\mu_0}$.

The energy flux is the Poynting vector ${\bf S}$ defined by

$$\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B} .$$

(a) Determine <u $_E>$ and <u $_M>$ for a harmonic electromagnetic wave.

[The notation < > means averaged over time for one or more field oscillations.]

- (b) Prove that $\langle u_E \rangle = \langle u_M \rangle$.
- (c) Prove that <S>=<u> c where u is the total field energy density.
- (d) What are the units of <S>?

- P2. Consider a harmonic electromagnetic wave with <S> = 1370 W/m². [This is the value of the **solar constant.**] Then calculate the amplitudes of the electric and magnetic field oscillations, i.e., E_0 and B_0 .
- P3. Write a short essay (2 paragraphs) that describes two practical applications of ultraviolet radiation. Use good grammar. The essay must be legible—preferably typed.
- P4. Light is incident from air into glass. The angle of incidence is 45 degrees and the angle of refraction is 30 degrees. Calculate the *speed of light* in the glass.
- P5. Consider a harmonic light wave propagating through water. The index of refraction of water is 1.33. Calculate the *current density* J(x,t) in the water. [Hint: The current is due to time-varying polarization of water molecules.]