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We describe an optical tweezers experiment suitable for a third-year undergraduate laboratory
course. Compared to previous designs, it may be set up in about half the time and at one-third the
cost. The experiment incorporates several features that increase safety. We also discuss how to use
stochastic methods to characterize the trap’s strength and shape. ©2002 American Association of Physics
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I. INTRODUCTION

A tightly focused beam of light can attract and tra
micron-sized dielectric particles whose refractive index
ceeds that of the surrounding medium. Although single-be
optical traps were developed only in 1986, they have alre
proven their worth in making possible an increasing num
of experiments.1 Optical traps have found particular use
biophysics, where they allow one to manipulate single m
ecules of DNA,2 allowing one access to their physical pro
erties and to the properties of attached molecules of biol
cal interest. They have been used passively, to record
forces induced on a bead, for example, by kinesin molecu3

and myosin-V.4 In other applications, tweezers have play
an active role, for example, to induce a ‘‘pearling’’ instabili
in lipid vesicles.5 The tweezer-induced motion of a bead al
can be used to measure local elasticities and viscosities
example, inside cells.6

The first designs of optical tweezers used large (>1 W)
lasers and expensive optical hardware, which placed th
beyond the reach of undergraduate laboratories. Rece
however, Smithet al.7 developed an apparatus that is simp
and cheap enough to be included in an undergraduate l
ratory. This article explores improvements to their origin
design, the cumulative effect of which is to make the ap
ratus more practical and much cheaper. In addition, the
sign eliminates several possibilities for injuries, increas
the safety of the experiment.~After the first version of this
work was submitted, Moothooet al. published a design with
similarities to ours.8 There are, nonetheless, a number of d
ferences worth discussing. In addition, atwo-beamtrap using
a hollow-core fiber has also been described.9 It shares some
of the advantages of the design described here, althoug
sers of much higher power are required.!

In the following, we first briefly review the theory of op
tical tweezers, mostly to alert the reader to a recent theo
ical advance that greatly simplifies calculations. We then d
cuss our design and its rationale, along with a care
discussion of one application for the tweezers.

II. BRIEF REVIEW OF OPTICAL TWEEZER
THEORY

The theory for optical tweezers has been extensively
cussed, for example, in Ref. 7; however, that discussion c
siders just two limits, one where the particle radiusR is
much smaller10 than the wavelength of lightl and one where
R@l.11 In the former limit (R!l), one pictures the particle
as a collection of dipoles that are polarized by a slowly va
393 Am. J. Phys.70 ~4!, April 2002 http://ojps.aip.org/aj
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ing electric field.~Slowly varying refers to the spatial varia
tion of the envelope, not the fast varations associated w
the optical frequency.! The energy of the particle is then

W5UV52 1
2 a«0E2V, ~1!

where

a5
«p

«0
21'

np
2

n0
2 21 ~2!

takes into account the relative dielectric constants~related,
for transparent particles, for optical frequencies to the refr
tive indices as shown! of the particle and the surroundin
medium. In Eq.~1!, V5(4/3)pR3 is the particle volume and

U52(1/2)PW •EW is the local electrostatic energy density, wi
P the polarization andE the electric field. BecauseU}E2, it
is also proportional to the local light intensityI ~power/area!.
Thus, gradients of light intensity lead to gradients inW and
hence to forces exerted on the particle. These forces ma
found by differentiating the expression forW with respect to
the particle coordinates. Fora.0 ~particle index higher than
that of the surrounding medium!, there will be an attractive
force towards regions of higher intensity. This force allow
one to trap dielectric particles near the focus of a microsc
objective, where there is a local intensity maximum. If w
further consider the destabilizing influence of radiation pr
sure, we find that we must use high-numerical-aperture
jectives to have stable traps; otherwise, radiation press
pushes the particle downstream, out of a single-beam trap
practice, we must use oil-immersion objectives with nume
cal aperture (NA).1.

The above discussion assumesR!l. The other limit,R
@l, may be treated by geometrical optics.11 The problem is
that trapping forces are most effective whenR'l, where
neither method is accurate. Recently, Tlustyet al.12 intro-
duced an approach that is valid for arbitrary particle si
assuming only a small index difference between trapp
particle and surrounding fluid.~The small-index approxima
tion is valid in the application described below.! They argue
that for highly localized beams, there is neglible phase d
ference across the spot sizew and that we can then genera
ize Eq.~1! to

W52aE
V

1

2
«0E2 dV, ~3!

and that this expression holds for all particle sizes. Here,
integral is over the particle volumeV. They then approxi-
393p/ © 2002 American Association of Physics Teachers
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mate the local energy density near the focus of a Gaus
laser beam as

U~r,z!5U0 expS 2
r2

2w2 2
z2

2w2e D , ~4!

wherer is the radial distance from the beam axis,z is the
distance along the axis, centered on the focus, andU0

5 1
2 «0E2 is the maximum energy density of the beam~at the

focus,r5z50!. Here,e is the anisotropy of the energy den
sity near the focus. For weakly focused light (NA!1), e
'1/NA. For the large numerical apertures used in twee
experiments,e'3.12 The somewhat artificial limit ofe51,
although not achievable in practice, leads to a simple ana
cal formula. Thus, for example, Tlustyet al.12 find that for
e51, the linear restoring force on a trapped particle sub
to small perturbations is given by

k5aU0w
4p

3
a3e2a2/2, ~5!

wherea5R/w is the particle size relative to the laser bea
waist. For the more realistic case of nonzeroe, they find13

kr5aU0w
2pe3

j3 FAp

2 S S ja

e D 2

21De2 a2/2 erfS ja

&e
D

1S ja

e De2 a2/2e2G , ~6!

and

kz5aU0w
4pe

j3 FAp

2
e2 a2/2 erfS ja

&e
D

2S ja

e De2 a2/2e2G , ~7!

where j5A12e2. Tlusty et al.12 show that these expres
sions, as well as the complete expressions for the nonlin
restoring force on large perturbations are in remarka
agreement with experiments, for all sizes of particles use

III. OPTICAL TWEEZERS SETUP

Figure 1 shows our version of the optical tweezers. L
other designs, it uses a laser beam that is suitably expa
and shaped and focuses it through a high-NA microsc
objective. The objective serves at the same time to mak
conventional optical image so that students can see~and find!
the trapped object. Our design has, however, a numbe
original features.

A. Laser

The original laboratory designs were based on ND:YA
or argon ion lasers, costing upwards of $10,000. That of R
7 was based on a 17 mW HeNe laser which costs ab
$2200. Ours uses a visible diode-laser module costing
proximately $500.14 Although high-power diode lasers, pa
ticularly in the infrared, have been available for some tim
their poor beam quality has posed an obstacle to using t
as sources for optical tweezers. The quality of an optical t
depends on sharply focusing a laser beam to a diffract
394 Am. J. Phys., Vol. 70, No. 4, April 2002
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limited spot. A beam shape that deviates markedly from
TEM00 Gaussian profile will lead to larger, less efficie
traps.

The beam from a diode laser has several problems. Firs
may be multimode, which guarantees larger spot sizes.
tunately, many single-mode lasers are now available. Sec
the beam is elliptical, with differing divergence angles alo
different coordinate axes. These have traditionally been
rected with an anamorphic prism, which is both expens
and adds complexity to the optical path. Third, the beam
astigmatic: different directions seem to originate from poi
that are displaced axially from each other by as much a
few microns. Without correction, such a beam cannot be
cused to a small spot size.

One approach to reducing astigmatism involves block
all parts of a beam except that which has the required sh
We can, for example, couple the laser into a single-mo
optical fiber and use the exiting beam; however, coupl
losses reduce considerably the available power, raising
required of the original laser diode.

An alternate approach is to use cylindrical optics to bo
equalize the divergence angle and to eliminate astigmat
An implementation of this idea that uses a miniature cylind
implanted in the laser diode case has been introduced
Blue Sky Research.14 We chose a commercial module bas
on their modified laser diode. The laser had a measu
power of 23 mW atl5658 nm.14 Higher-power versions of
the module exist in the infrared. These would be more s
able for a research instrument in the lab, particularly if o
had biological applications in mind. For an undergradu
lab, it is safer and more practical to use a visible la
source.15

B. Microscope

Previous designs have used commercial upright or
verted microscopes or, occasionally, home built inverted
crocopes. In our design, we follow the latter course in elim
nating the microscope. Not only are good microscop
expensive, but they always introduce the possibility of se
ous injury to students’ eyes if they look through the eyepie
with the trap on.~In normal operation, the beam goes dow
through the trap and back reflections can readily be remo

Fig. 1. Optical tweezer setup.
394J. Bechhoefer and S. Wilson
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by filters. But we need to remember the old adage that a
thing that can possibly go wrong eventually will.! By elimi-
nating the eyepiece, we eliminate a whole series of unfo
nate scenarios. Second, cheap microscopes are
unacceptably floppy when used with the 100X, o
immersion objectives that produce the best results for tr
ping. Finally, they are often inflexible when we want to a
nonstandard elements to the beam path.

For all of these reasons, we developed an ‘‘open mic
scope’’ based on commercially available optics and mou
all placed on a standard optical breadboard.16 Previous de-
signs using such optics have all been ‘‘inverted mic
scopes,’’ with the beam coming up through an objective a
onto a horizontal sample stage. In our design, we opted f
sidewaysmicroscope where the beam path stays paralle
the optical table. This sideways configuration has several
vantages:

Keeping the entire beam~laser and microscope! in one
plane simplifies greatly the alignment and setup. Onc
standard height is chosen~about 10 cm in our setup!, one can
mark an index card at the proper height and quickly line
all elements approximately to the reference height. Hav
the microscope beam path at 90° vertical to the laser pa
much more difficult to align correctly.

Having a low beam in one plane is safer. Students wo
have to stoop to put their eyes at the same level as the b
In the traditional configuration, the beam will almost ce
tainly pass eye level somewhere.

Our microscope design is as follows: The light source i
modified halogen desklamp, whose 20 W bulb puts
ample light.17 We found that using two plano-convex lens
produced an acceptable condenser. The sample was he
an XYZ translation stage that served to focus and later
displace the sample. The stage is the most expensive ele
of the microscope~$650!, and a poor choice—one that lack
rigidity or whose movement is not smooth—will lead
much student frustration. After some trial and error,
settled on a 1/29 stage recently introduced by Thorlabs.18 As
in Ref. 7, we use a student grade 100X oil-immersion mic
scope objective.19 Because the lens of the microscope obje
tive and the sample glass slide are vertical, it is importan
buy high-viscosity immersion oil.20

Finally, the image from the microscope is directly pr
jected onto a camera sensor. We used both a traditional C
camera21 producing analog video output and a USB-bas
Web camera22 based on a CMOS sensor and producing d
tal output.~Firewire cameras have recently become availa
but remain more expensive.! The video camera was fed int
a frame grabber23 and into a computer. Although expensiv
the camera and framegrabber provide a robust solution th
easily implemented. Web cameras are much cheaper but
flexible and less durable. They are made of plastic and t
to break and may be in the long run be more expensive
maintain. So many Web cameras are available that it is
ficult to examine them all. The one we selected has featu
that are useful for the present design.

The lens can be removed~and replaced!, allowing us to
project an image directly onto the CMOS sensor.

The legs detach, allowing us to fasten the camera easi
a standard 1/29 mounting post.

Other small improvements in our design include the f
lowing.

Because the beam is all in one plane, the laser beam
counters only one total-reflecting~‘‘normal’’ ! mirror and one
395 Am. J. Phys., Vol. 70, No. 4, April 2002
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dichroic mirror. ~The normal mirror is added only becaus
we need two mirrors to independently fix the position a
orientation of the laser beam with respect to the microscop
optical axis.!

Previous designs used two lenses for a beam expande~to
make the beam size equal to the back aperture of the mi
scope objective! and then a third lens to form an intermedia
image at the standard 160 mm behind the objective. H
both functions are accomplished by a single lens.~At the
level of paraxial, Gaussian optics, a system of three len
can always be reduced to a single-lens equivalent.! It is a
nice exercise to ask the students to calculate the requ
focal length of this lens, given the approximate beam dia
eter from the laser module, the size of the back aperture
the objective, and the standard tube length~160 mm!. We
find that we should use a lens of focal lengthf
5160(D1 /D2) mm, whereD1 is the diameter of the colli-
mated laser beam andD2 is the diameter of the back apertu
of the microscope objective. As Svoboda and Block ha
noted,10 it is important to err by overfilling the back apertur
as underfilling will lead to a rapid decrease in effective N
and loss of trapping efficiency.

C. Aligning and operating the trap

Once students have set out all the pieces on the op
breadboard, they are faced with the sometimes frustra
task of aligning the elements to obtain trapping. One ba
strategy is to separate the task of building the microsc
from that of building the trap. The first step, then, is to ali
the microscope. This is not too difficult, but we need to ma
sure that we can make reasonably sharp, isotropic image
spheres in solution. One-micron polystyrene spheres a
good test of the performance of the microscope, and t
make good objects to trap, as well.24 Because their density is
close to that of water, spheres less than about 3mm will
settle slowly. To trap larger spheres, we can density ma
the surrounding fluid by using a water–glycerol mixtur
With the smaller spheres, we did not use this technique.

To align the microscope, one trick is to start by identifyin
the various surfaces~immersion oil–glass, then glass–fluid
then, maybe fluid–glass!. Small dust particles in the oil will
swirl in a way that differs from the Brownian motion o
beads in the fluid.~In particular, the immersion oil flows in
direct response to changes in focus, while the fluid inside
sample cell is shielded.!

After the microscope has been aligned, we can introd
the trap via the dichroic mirror. In working on a breadboa
with pre-drilled, aligned holes, it is useful to begin b
roughly aligning the beam path along the holes. It is a
useful to leave out the intermediate lens until the basic ali
ment has been achieved. Then we can insert the interme
lens and adjust its position so that the laser beam fills
back aperture.

At this point, we can attempt to trap particles. The ba
requirement is that the beam be centered on the optical
and aligned along it. There are thus four parameters to
and four screws on the kinematic mirror mounts. Because
number of ‘‘knobs’’ equals the number of variables to adju
there is a solution. One trick is to note that the horizontal a
vertical adjustments are decoupled. Thus, we can simu
neously adjust the horizontal screws of the two mirrors
align the horizontal axis and orientation, before repeating
procedure for the vertical axis. The last adjustment is
395J. Bechhoefer and S. Wilson
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move the intermediate lens along the optical axis in orde
make the focus of the trap coincide with the focus of t
microscope. Usually, we first reach a situation where the
is located somewhere inside the glass of the coverslip, so
particles are trapped, in the radial direction by the opti
forces and then pinned against the coverslip by the s
merged trap. Once trapped in this way, the particles w
usually be stuck permanently to the glass. After achiev
this situation, we merely have to advance the intermed
lens, so that the trap is pushed up into the fluid.

IV. APPLICATIONS

Although most of the effort in the optical tweezer lab
directed towards setting up and achieving trapping, it is go
to have an application as an ultimate goal. Smithet al.7 sug-
gest several possibilities, including the calibration of tr
strength by measuring the escape velocity of a trapped
ticle subjected to a hydrodynamical flow. Moothooet al.8

discuss the transfer of angular momentum from a circula
polarized beam to an anisotropic particle. In our lab, we
the students to explore the strength and shape of the tra
looking at the stochastic motion of trapped particles. As d
cussed below, by making a movie of particle motion, we c
deduce the trap strength and even the potential shape.
only does this exercise give the students some feel for
properties, it can be an instructive introduction to stocha
phenomena.

Depending on the level and sophistication of students~in
particular, whether they have had a course in statistical
chanics!, one may explore these issues in different depth.
will discuss first a simple version that is suitable for thir
year students who have not had any statistical mechanics
then a more complete version that raises subtle issues.

A. Simple analysis of trapped-particle statistics

The basic measurement is to take a movie of the b
caught in the trap and to use the equipartition theorem
deduce the trap strength. In doing so, we are approxima
the shape of the trap potential by a parabola, as illustra
schematically in Fig. 2~a!. We use standard software pac
ages to record a movie of at least 100 images of a trap
bead, storing it to a hard disk. If the software permits, o
should record a cropped image that just encloses the b
~50 by 50 pixels often suffices!; otherwise, one may crop th
movie afterwards to reduce file size and to aid in the ima
processing.

We have written routines in NIH/Scion Image to extra
the bead position from a movie that is cropped to include
image of the fluctuating bead and nothing else.25 Once we
have a list ofx andy positions for the bead, we can use t
equipartition theorem,

1
2 kx^x

2&5 1
2 kBT, ~8!

wherekx is the trap spring constant for displacements alo
the x axis, x is the deviationof the particle from its mean
positionx0 , ^¯& denotes averages over theN measurements
in the movie,kB is Boltzmann’s constant, andT is the abso-
lute temperature. Equation~8! holds only to the extent tha
part of the potential that the bead explores can be appr
mated as parabolic. Making such an approximation allows
to simply use the variance of the measured positions to
tain the trap spring constant. We can then repeat the mea
ments for they axis and for different laser powers.26 ~Be-
396 Am. J. Phys., Vol. 70, No. 4, April 2002
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cause the laser output is polarized, the power may
conveniently reduced using an analyzer set at a varia
angle.! From Eq.~8!, we expect that the graph of varianc
versus 1/P should be linear, whereP is the laser power.~The
linearity of Maxwell’s equations and the constitutive equ
tions implies thatkx}P.! Typical data are shown in Fig. 3~a!.
Note that the infinite-power limit does not extrapolate to ze
variance. The extra fluctuations can be traced to the effec
shot noise in the images, which produces apparent positi
fluctuations. They are minimized by selecting as many pix
as possible in the threshold algorithm.25 Because this noise is
independent of the bead’s random movements, we can
ply subtract its variance to estimate the spring constant
sus power~again assuming a linear restoring force on t
bead! @see Fig. 3~b!#.

B. More complete analysis of trapped-particle statistics

If the level of the students and the time available perm
there are many issues ignored in the simple analysis
sented above that can be explored.

The trap potential was assumed to be parabolic, whe
in fact it should flatten out far away from the beam foc
@Fig. 2~a!#. We can in principle detect deviations from th
parabolic shape by computing the Boltzmann distribution

r~x!5
1

Z
e2U(x)/kBT, ~9!

Fig. 2. ~a! Schematic of potential well seen by trapped particle. Solid line
the actual potential; dashed line is parabolic approximation.~b! Position
distributions for three different temperatures~1, 2, and 3!, as shown by
horizontal lines in~a!. Note how the distributions broaden as the tempe
ture increases from 1 to 3. Note, too, the increasing difference between
parabolic approximation, which leads to a Gaussian, and the actual dist
tion.
396J. Bechhoefer and S. Wilson
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where the partition function Z is defined so that
*2`

` r(x)dx51. For a parabolic potential, the expected d
tribution is Gaussian, and the equipartition theorem ho
The expected potential shape will have broader wings,
cause the particle will spend more time in the wings of
potential. This evolution of particle-position distribution wit
temperature is illustrated in Fig. 2~b!, for three different tem-
peratures, showing the increasing deviations as the trap
comes weaker~1 to 3!. ~The normalization of a potential tha
is finite for large deviations raises some even more su
points.27! A typical measured distribution is shown in Fig
4~a!. To date, we have not been able to detect convinc
deviations from a Gaussian@cf. Fig. 4~b!#, but with enough
images, the detection of such deviations should be poss
~As computers and cameras improve, the 100 or so ima
that we have recommended that students take can be
creased.!

The observations have been heretofore been assumed
independent. A more careful statement is that particle p
tions are correlated over a time scalet0 that has been as
sumed to be shorter than the time interval between mo
frames. In order for the simple analysis described abov
make sense, each individual snapshot should have an e
sure time!t0 while the interval between snapshots shou
be @t0 . The former condition is easy to satisfy in camer
with electronic shutters, which often can be as fast
1024 s. The latter condition is usually satisfied for a stro
trap. In the Appendix, we show that the autocorrelation fu
tion for positional fluctuations is given by

^x~ t !x~ t1t!&5
kBT

k
e2utu/t0, ~10!

with the correlation timet05g/k, whereg is the fluid damp-
ing andk the spring constant. Thus, as the laser power~and
hence spring constant! tends to zero,t0 becomes large, and

Fig. 3. ~a! Position variance versus 1/P. ~b! Spring constant versusP. Error
bars in~a! were obtained from a Monte Carlo simulation of the data sets.
in ~b! was forced through 0.
397 Am. J. Phys., Vol. 70, No. 4, April 2002
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the standard video capture rates may lead to correlated m
surements.

How can we deal with correlated measurements? The e
est way is to retake the time series, taking care to lengt
the time interval between frames sufficiently beyond the c
relation time. We return then to the simple situation me
tioned above. If we cannot change the capture rate, we
simply select images at long-enough intervals, throwing
the rest of the data. Doing anything more sophisticated
probably not worth the effort. Ambitious students can me
suret0 and deduce the spring constant that way. They sho
compare their result to that obtained from the equipartit
theorem.

As discussed already in the simple version of the analy
shot noise in the image produces readily measurable fluc
tion noise in the measurement position. If the trapping p
tential is Gaussian, we can treat this complication in
simple way described above. Because the shot-noise-ind
fluctuations are independent of the fluctuations in the bea
movement, we can simply subtract the variance of the sh
noise fluctuations from the total variance to recover the t
variance that is needed in Eq.~8!, thereby justifying the con-
struction used in Fig. 3~b!.

If the trap potential is not Gaussian, then the observ
positional histogramrobs(x) will be the convolution of the
desired particler true(x) with distribution rshot(x) that de-
scribes the effect of shot-noise fluctuations on the infer
position of the particle:

robs~x!5E
2`

`

dx8 r true~x8!rshot~x2x8!. ~11!

it
Fig. 4. ~a! Observed distribution of particle positions for one-dimension
displacements in the trap. The distance scale was calibrated by usin
micrometers on theXY part of the translation stage to make known displac
ments of particles stuck to the glass plates. The observed distributio
roughly Gaussian. As explained in the text, the observed distributions
convoluted with a Gaussian distribution of measurement errors. The
distributions would be narrower.~b! Potential inferred from~a! using the
Boltzmann distribution.
397J. Bechhoefer and S. Wilson
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It is safe to assume~and we can verify by looking at posi
tional fluctuations in the high-power limit! that rshot(x) is
Gaussian. The measurement variance is given by the in
cept in Fig. 3~a!. We are thus faced with a classic inversio
problem: Givenrobs and rshot, find r true. There are many
techniques for solving such a problem.28 The naive way is to
write down a finite representation and invert the respo
matrix. Because of noise, inversion is usually a poor al
rithm, which leads to unacceptably large fluctuations in
estimate forr true. The other ways to proceed all involv
imposinga priori knowledge of the smoothness of the d
tribution r true to constrain the space of possible solution
Cowan,28 for example, discusses Tikhonov and maximu
entropy regularization, which take into account prior info
mation in different ways. The methods are probably too co
plicated for a lab course—unless one has access to ca
routines. In any case, it is important to recognize the disti
tion between the fatter, more Gaussian-lookingrobs and the
actual distributionr true.

V. CONCLUSIONS

We have introduced a design for optical tweezers tha
suitable for a third- or fourth-year undergraduate phys
laboratory. In particular, it is faster to set up, cheaper, a
we believe, safer than previous designs. Students in
course take three 4-hour sessions to complete the labora
The stochastic analysis of the motion of the trapped part
is attractive because it is one of the few places in the un
graduate curriculum where a student can experiment w
stochastic phenomena, at readily accessible space and
scales. Moreover, the analysis can be done with varying
grees of sophistication, as appropriate to the level of
students and the amount of time that they have.
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APPENDIX

As mentioned above, there is a characteristic time sc
t0 , for thermal fluctuations of a particle trapped in a pote
tial. If observations are made on scales much longer thant0 ,
they may be treated as independent measurements of th
sition. If not, one must worry about correlations. Here,
give some details about this problem, following metho
originally due to Langevin. The general issues are descri
in the commonly used statistical physics textbook by Rei29

Consider a particle immersed in a fluid and trapped i
harmonic potential. The particle is small enough that therm
fluctuations are visible but much larger than the fluid m
ecules. Its equation of motion is
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mẍ1g ẋ1kx5j~ t !, ~A1!

wherem is the particle mass,x the deviation from equilib-
rium, g the friction coefficient,k the trap spring constant
and j(t) the fluctuating force due to random kicks by th
many neighboring fluid molecules. We will discuss the pro
erties of j below. If the particle is a sphere of radiusR
immersed in a fluid of viscosityh and far from any bound-
aries, then standard hydrodynamic arguments lead tog
56pRh.

One simplification is that in all cases we are interested
the motion is so overdamped that one may neglect co
pletely the inertial term in Eq.~A1!, giving

ẋ1
1

t0
x5

1

g
j~ t !, ~A2!

wheret05g/k is the relaxation time. We can treatj(t) as an
arbitrary driving function and solve Eq.~A2!, finding

x~t!5e2t/t0E
2`

t 1

g
j~t8!et8/t0 dt8. ~A3!

In order to construct the correlation function̂x(t)x(t
1t)&, we write

x~0!x~t!5
e2t/t0

g2 E
2`

0

j~t9!et9/t0 dt9E
2`

t

j~t8!et8/t0 dt8.

~A4!

The autocorrelation function is then obtained by taking
ensemble average, bearing in mind that the only stocha
~random! terms are thej’s:

^x~0!x~t!&

5
e2t/t0

g2 E
2`

0

dt9E
2`

t

dt8 ^j~t8!j~t9!&e(t81t9)/t0.

~A5!

Next, we assume that

^j~t8!j~t9!&5Md~t82t9!, ~A6!

whered is a Dirac delta function andM is an amplitude, to
be determined below. Physically, the assumption of the de
function form means that successive random kicks are un
related with each other, or, more precisely, that any corre
tions take place on time scalest!t0 . ~This time scale would
typically be a phonon frequency, about 10213 s, quite a short
time indeed.!

Continuing the derivation, we have

^x~0!x~t!&5
M

g2 e2t/t0E
2`

0

dt9E
2`

t

dt8

3 d~t82t9!e(t81t9)/t0 ~A7!

5
M

g2 e2t/t0E
2`

0

dt9 e(2t9)/t0 ~A8!

5
M

g2

t0

2
e2t/t05

M

g2

g

2k
e2t/t05

M

2gk
e2t/t0.

~A9!

Now, the equipartition theorem states that^x2&5 kBT/k, and
thus
398J. Bechhoefer and S. Wilson
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M52kBTg. ~A10!

The final form of the autocorrelation function is then

^x~ t !x~ t1t!&5
kBT

k
e2utu/t0, ~A11!

where the absolute value can be established either by co
ering the explicit caset,0, or more generally, by noting tha
the autocorrelation function of a real function is always ev
Note that we have replaced 0 byt, which is allowed because
we are assuming thatx(t) is a stationary stochastic proces
so that ensemble averages are independent of the tim
which they are carried out.

Thus, as claimed, correlations last a timet05g/k. When
the laser power~and thus, trap strengthk! is low, the corre-
lation times can be long and must be taken into account.
finite correlation time can also be interpreted as a kind
low-pass filtering by the particle of the original white noi
and, indeed, Fourier methods are often preferred for disc
ing these types of stochastic problems. Using the Wien
Khintchine theorem, one can calculate the power spectrum
the particle by taking the Fourier transform of Eq.~A11!.
One finds

x2~v!5
2kBTg

k2~11v2t0
2!

, ~A12!

which gives the characteristic frequency response of the
ticle to the thermal driving force, normalized so th
*0

` x2(v)dv5kBT/k5^x2&. In addition, we have estab
lished the strengthM of the thermal noise in Eq.~A10!. The
result is at first surprising, because in addition tokBT, there
is a factor ofg, the dissipation. This relation is a simp
example of the fluctuation-dissipation theorem, describ
also in Reif.29

Finally, it is interesting to estimate some numbers. For
mm diameter particle in water (h'1023 kg/m s), g
'1028 (MKS). A typical trapping force is of order Pn/c,7

with laser powerP'10 mW for a strong trap, medium inde
n51.33, andc the velocity of light. This gives a trap
strength '10 pN and a typical spring constan
'10 pN/1mm510 mN/m, implying a relaxation timet0

'1 ms. Weaker traps will have slower time scales, and
needs to wait 2–3t0 to be able to neglect correlations com
pletely. If one acquires data at video rates and the tra
weak, one can see correlations easily.

a!Author to whom correspondence should be addressed. Electronic
johnb@sfu.ca
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