
Physics 471 – Fall 2009 
 

Homework #12, due Wednesday, December 9 
 
 
1. [4] Griffiths problem 4.10. 
  
 
2. [4] Griffiths problem 4.13. 
 
 
3. [2] Griffiths problem 4.16 
 

4. [2] a) A hydrogen atom emits a photon of energy 1.89 eV =  Ry
36
5 , and ends up in a 2p state 

(n=2, l=1).  What are the possible states the atom could have been in before it emitted the 
photon?  When an atom emits a photon, the value of l for the atomic state changes by ±1.  You 
can use the traditional names for the states (such as 2p) or you can label them by their quantum 
numbers n and l.  For each state on your list, state its degeneracy. 

b) A physicist measures the energy of the hydrogen atom in part (a) to confirm that the atom is in 
a 2p state with energy –Ry/4, then he measures the z-component of angular momentum, , and 
obtains the result .  After that his colleague measures the atom’s energy again.  What are the 
possible results she will get, and with what probabilities?  Explain how you got your answer.  
You may assume that the atom does not emit or absorb a photon during the experiment. 
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5. [8] To understand Chemistry, we need to work with atomic orbitals that are neither eigenstates of 

 nor of zL̂ 2L
r

.  For example, consider the three 2p states (n=2, l=1.): 1,1,2,0,1,2,1,1,2 − .   
 
 a) [1] Write down the three wavefunctions, 121210211 ,, −ΨΨΨ  in spherical coordinates, using 

Tables 4.3 and 4.7 in Griffiths. 
 
 b) [2] Construct the following orthonormal linear combinations.   
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 Write the wavefunctions in rectangular coordinates, to see why I named them the way I did.  
(You may leave the exponentials in spherical coordinates.)  Show that 
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is spherically symmetric. 

 
 c) [1] Carbon is a most amazing atom.  In the form of graphite, each carbon atom is strongly 

bonded to 3 neighbors in a plane, and weakly bonded to the atoms above and below the plane.  
The atoms in the plane form a honeycomb lattice.  We can create atomic orbitals that point in 3 
directions separated by 120° in a plane by taking linear combinations of the 2s (l=0) and any two 
of the 2p (l=1) orbitals.  The new orbitals are called “sp2 hybrid” orbitals.  We’ll use the orbitals 



pypxs 222 ,, ΨΨΨ  to form sp2 orbitals in the x-y plane, while leaving pz2Ψ  as the orbital pointing 
out of the plane.  Let’s name the 3 new orbitals: 321 ,, ΨΨΨ .  We’ll construct them using the 
following principles: 

  i) They must be orthonormal. 
  ii) They must all contain the same “amount” of s2Ψ , which is spherically symmetric. 

iii) Choose  pointing along the +y axis.  Then aΨ bΨ  and cΨ  will point into the 3rd and 4th 
quadrants, respectively, and are mirror images of each other reflected through the y-axis.   

  
 The constraints ii) and iii) can be represented by the following linear combinations: 
   pys ba 221 Ψ+Ψ=Ψ  
    pypxs dca 2222 Ψ−Ψ+Ψ=Ψ

    pypxs dca 2223 Ψ−Ψ−Ψ=Ψ
 Write down a system of four equations for the coefficients a, b, c, and d, based on the condition 

that the new set of states  must be orthonormal. 321 ,, ΨΨΨ
 
 d) [2] Assume that the coefficients a, b, c, and d are real.  Solve your system of equations to find 

numerical values for a, b, c, and d.  Make a rough sketch of the new orbitals in the x-y plane. 
 

 e) [2] In the form of diamond, each carbon atom is strongly bonded to 4 neighbors.  The four 
bonds are all equally distant from each other, with an angle of 109.5° between any two bonds.  
The four orbitals used to make these bonds are called sp3 hybrid orbitals, because they are linear 
combinations of the s-state and three p-states.  With a little knowledge of geometry, it is not hard 
to guess that the four sp3 orbitals are of the following form, where I have chosen the first one to 
point along the z-axis: 

 
   pzs ba 221 Ψ+Ψ=Ψ  
    pypzs dca 2222 Ψ+Ψ−Ψ=Ψ

   pxpypzs ddca 22223 2
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Ψ+Ψ−Ψ−Ψ=Ψ  

   pxpypzs ddca 22224 2
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Ψ−Ψ−Ψ−Ψ=Ψ  

  
 Follow a similar procedure to what you did in parts b) and c), i.e. write down a set of four 

equations for the four unknown constants, a, b, c, and d.  Then assume they are real, and solve 
your equations. 

 
 
 Some of you may have noticed that the coefficients b, c, and d you found in parts (d) and (e) look 

just like the components of the corresponding vectors in real space.  But there is a difference, in 
that you can’t find 3 orthogonal vectors in a plane, nor can you find 4 orthogonal vectors in 3-
dimensional space.  You were able to do it here because of the additional quantum state you used, 
namely the spherically symmetric s-state.  (In other words, it’s the dimension of Hilbert space that 
counts, not the dimension of real space.) 


