Physics 471 - Fall 2009

Homework \#3, due Friday, September 25
 Point values are in square brackets.

1. [6] Griffiths problem 2.5

This problem is rather long, especially part (c). Use the following trigonometric identities:
$\sin ^{2}(\mathrm{x})=1 / 2(1-\cos (2 \mathrm{x}))$ and $\sin (\mathrm{x}) \sin (\mathrm{y})=1 / 2(\cos (\mathrm{x}-\mathrm{y})-\cos (\mathrm{x}+\mathrm{y}))$
and use the integrals shown on the inside back cover of your textbook.
If you really don't like doing integrals, here is the most difficult one, from Mathematica:
$\int_{0}^{a} x \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi x}{a}\right) d x=\frac{a^{2}}{2 \pi^{2}}\left(\frac{\cos ((m-n) \pi)-1}{(m-n)^{2}}+\frac{1-\cos ((m+n) \pi)}{(m+n)^{2}}\right)$
for m, n integers and $m \neq n$.
When you get to part (d), compare Equations [1.35] and the first part of [1.33]. When are you allowed to use [1.33] (" the quick way")? When must you use [1.35]? By the way, Griffiths’ quote is from the 1944 movie, "Arsenic and Old Lace."
2. [5] Griffiths problem 2.7.

Hint: Draw pictures of the first few stationary states of the infinite square well, and compare them with $\Psi(x, 0)$. Can you eliminate some of the c_{n} coefficients just by symmetry?
For part (d), you can use Mathematica to evaluate the infinite sum, or just leave it as a sum.
3. [4] Griffiths problem 2.10. Note for part (a): If you use Equation [2.66], then your ψ_{2} will already be normalized. Don't bother to check the normalization unless you really feel like doing extra work.
4. [5] Griffiths problem 2.11. Do this problem ONLY for ψ_{0}. It's too long otherwise.

