Physics 471 More in-class Discussion Questions

I am grateful to Michael Dubson of the University of Colorado for the vast majority of these questions.

QM1-52. Consider three functions $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{y})$, and $\mathrm{h}(\mathrm{z})$. $\mathrm{f}(\mathrm{x})$ is a function of x only, $g(y)$ is a function of y only, and $h(z)$ is a function of z only. They obey the equation $\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{y})+\mathrm{h}(\mathrm{z})=\mathrm{C}$ $=$ constant. What can you say about f, g, and h ?
A) f, g, and h must all be constants.
B) One of f, g, and h , must be a constant. The other two can be functions of their respective variables.
C) Two of f, g, and h must be constants. The remaining function can be a function of its variable.

Answer A.

QM1-53. For the particle in a 3D box, is the state ($\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}, \mathrm{n}_{\mathrm{z}}$) $=$ $(1,0,1)$ allowed? A) Yes B) No

Answer: B. The value $\mathrm{n}_{\mathrm{y}}=0$ will result in $\Psi(x, y, z)=0$.
QM1-54. The ground state energy of the particle in a 3D box is $\left(1^{2}+1^{2}+1^{2}\right) \frac{\hbar^{2} \pi^{2}}{2 \mathrm{ma}^{2}}=1 \varepsilon$. What is the energy of the $1^{\text {st }}$ excited state?
A) 2ε
B) 3ε
C) 4ε
D) 5ε
E) 6ε

Answer: A. (If ε were defined in the logical way, the answer would be E. But check the definition.)

QM1-55. What is the degeneracy of the state $\left(\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}, \mathrm{n}_{\mathrm{z}}\right)=(1,2$, 3)?
A) 1
B) 3
C) 4
D) 6
E) 9

Answer: D.

QM1-56. Is the 3D wavefunction

$$
\psi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\frac{2}{\mathrm{a}}\right)^{3 / 2} \sin \left(\frac{\mathrm{n}_{\mathrm{x}} \pi \mathrm{x}}{\mathrm{a}}\right) \sin \left(\frac{\mathrm{n}_{\mathrm{y}} \pi \mathrm{y}}{\mathrm{a}}\right) \sin \left(\frac{\mathrm{n}_{\mathrm{z}} \pi \mathrm{z}}{\mathrm{a}}\right) \text { an }
$$

eigenfunction of $\hat{\mathrm{H}}_{\mathrm{x}}=\frac{-\hbar^{2}}{2 \mathrm{~m}} \frac{\partial^{2}}{\partial \mathrm{x}^{2}}$?
A) Yes
B) No

Answer: A.

QM1-57. A planet is in elliptical orbit about the sun.

The torque $\vec{\tau}=\vec{r} \times \vec{F}$ on the planet about the sun is
A) zero always.
B) Non-zero always
C) zero at some points, non-zero at others

Answer: A. The force vector is antiparallel to the position vector.

QM1-58. The magnitude of the angular momentum of the planet about the sun $\vec{L}=\vec{r} \times \vec{p}$ is
A) greatest at perihelion (point P)
B) greatest at aphelion (point A)
C) constant everywhere in the orbit

Answer: C. The angular momentum is conserved because there is no torque.

QM1-59. The commutator [$\hat{y} \hat{p}_{z}, \hat{x} \hat{p}_{z}$] is
A) zero
B) none-zero
C) sometimes zero, sometimes nonzero

Answer: A.

QM1-60. The commutator $\left[\mathrm{L}_{\mathrm{z}}{ }^{2}, \mathrm{~L}_{\mathrm{z}}\right]$ is
A) zero
B) none-zero
C) sometimes zero, sometimes non- zero

Answer: A.

QM1-61. In Cartesian coordinates, the volume element is dx dy dz . In spherical coordinates, the volume element is
A) $r^{2} \sin \theta \cos \varphi d r d \theta d \varphi$
B) $\sin \theta \cos \varphi d r d \theta d \varphi$
C) $r^{2} \cos \theta \sin \varphi d r d \theta d \varphi$
D) $r \sin \theta \cos \varphi d r d \theta d \varphi$
E) None of these

Answer: E. It looks like A without the $\cos (\varphi)$ term.
QM1-62. In Cartesian coordinates the normalization condition is $\int_{-\infty}^{+\infty} \mathrm{dx} \int_{-\infty}^{+\infty} \mathrm{dy} \int_{-\infty}^{+\infty} \mathrm{dz}|\Psi|^{2}=1$. In spherical coordinates, the normalization integral has limits of integration:
A) $\int_{0}^{+\infty} \mathrm{dr} \int_{0}^{2 \pi} \mathrm{~d} \theta \int_{0}^{\pi} \mathrm{d} \varphi \ldots$
B) $\int_{-\infty}^{+\infty} \mathrm{dr} \int_{0}^{2 \pi} \mathrm{~d} \theta \int_{0}^{\pi} \mathrm{d} \varphi \ldots$
C) $\int_{0}^{+\infty} \mathrm{dr} \int_{0}^{2 \pi} \mathrm{~d} \theta \int_{0}^{2 \pi} \mathrm{~d} \varphi \ldots$
D) $\int_{-\infty}^{+\infty} \mathrm{dr} \int_{0}^{\pi} \mathrm{d} \theta \int_{0}^{\pi} \mathrm{d} \varphi \ldots$
E) None of these

Answer: E. A is the closest, but the π and 2π should be exchanged.

QM1-63. Recall that an operator \hat{Q} is Hermitian if $\langle\mathrm{f} \mid \hat{\mathrm{Q}} \mathrm{g}\rangle=\langle\hat{\mathrm{Q}} \mathrm{f} \mid \mathrm{g}\rangle$ for all normalizable functions f and g . The operator $\hat{\mathrm{L}}_{z}$ is Hermitian, since it corresponds to an observable. Is the operator $\mathrm{i} \hat{\mathrm{L}}_{\mathrm{z}}$ Hermitian?
$\begin{array}{ll}\text { A) Yes } & \text { B) No }\end{array}$
Answer: B. The Hermitian conjugate of i is -i .
QM1-64. [$\left.\mathrm{L}^{2}, \mathrm{~L}_{+}\right]=\left[\mathrm{L}^{2}, \mathrm{~L}_{\mathrm{x}}+\mathrm{i} \mathrm{L}_{\mathrm{y}}\right]$ Does this commutator equal zero?
A) Yes, $\left[L^{2}, L_{+}\right]=0$
B) No $\left[L^{2}, L_{+}\right] \neq 0$

Answer: A. The raising operator increases the eigenvalue of L_{z}, but it keeps the state in the same L^{2} ladder.

QM1-65. The operator for (angular momentum) ${ }^{2}$ is $L^{2}=L_{x}{ }^{2}+L_{y}{ }^{2}+L_{z}{ }^{2}$.

Is it true that $\left\langle L^{2}\right\rangle=\left\langle L_{x}{ }^{2}\right\rangle+\left\langle L_{y}{ }^{2}\right\rangle+\left\langle L_{z}{ }^{2}\right\rangle$?
A) Yes, always B) No, never
C) Sometimes yes, sometimes no, depending on the state function Ψ used to compute the expectation value.

Answer: A.

QM1-66. In spherical coordinates,
$\nabla \mathrm{f}=\hat{\mathrm{r}} \frac{\partial \mathrm{f}}{\partial \mathrm{r}}+\hat{\theta} \frac{1}{\mathrm{r}} \frac{\partial \mathrm{f}}{\partial \theta}+\hat{\varphi} \frac{1}{\mathrm{r} \sin \theta} \frac{\partial \mathrm{f}}{\partial \varphi}$, and in QM, the
angular momentum operator is $\hat{\mathrm{L}}=\frac{\hbar}{\mathrm{i}} \overrightarrow{\mathrm{r}} \times \nabla=\frac{\hbar}{\mathrm{i}} \mathrm{r} \hat{\mathrm{r}} \times \nabla$, the $\hat{\mathrm{r}}$ component of $\hat{\mathrm{L}}$ is ?
A) 0
B) non-zero but dependent on θ, φ only (independent of r)
C) non-zero but dependent on r, θ, and φ

Answer: A. $\hat{r} \times \vec{A}$ has no \hat{r} component, for any \vec{A}.
QM1-67. In QM, the operator $\mathrm{L}^{2}=\hat{\mathrm{L}} \cdot \hat{\mathrm{L}}$
A) depends on θ, and φ only (independent of r)
B) depends on r, θ, and φ
C) depends on θ only (independent of r, φ)

Answer: A. There are two ways to see this. First, you can look at the differential form of the L^{2} operator. Second, you can realize that any wavefunction of the form $\Psi(r, \theta, \phi)=R(r) Y_{l}^{m}(\theta, \phi)$ is an eigenstate of L_{2} with eigenvalue $\hbar^{2} l(l+1)$, for any arbitrary $R(r)$. So L^{2} can't depend on r.

QM1-68. Ignoring spin, what is the angular momentum of the ground state of an electron in a hydrogen atom, in units of h-bar?
A) 0
B) $1 / 2$
C) 1
D) $3 / 2$
E) I don't know

Answer: A. The ground state is spherically symmetric.

QM1-69. In classical mechanics, the translational KE of a particle is $\frac{p^{2}}{2 m}$. What is the formula for rotational KE (where I is moment-of-inertia)?
A) $\frac{1}{2} I L^{2}$
B) $\frac{L^{2}}{2 I}$
C) $I \omega$
D) $2 I L^{2}$

Answer: B.

QM1-70. The effective potential is shown for $\boldsymbol{\ell}=0,1$, and 2. The first several allowed energy levels are shown.

As indicated in the figure, the $\mathrm{n}=2, \ell=0$ state and the $\mathrm{n}=$ $2, \ell=1$ state happen to have the same energy (given by $\mathrm{E}_{\mathrm{n}=2}$
$=\mathrm{E}_{1} / 2^{2}$). Do these states have the same radial wavefunction $\mathrm{R}(\mathrm{r})$?
A) Yes
B) No

Answer: B. See the table in Griffiths.

QM1-71. The spectrum of "Perkonium" has 3 emission lines

Which energy level structure is consistent with the spectrum?

Answer: C. The spectrum given at the top of the page consists of energy differences between pairs of levels.

QM1-72. If $\exp (+\mathrm{im} 2 \pi)=1$, then it must be true that
A) $m=0,1,2, \ldots$
B) $m=0,1 / 2,1,3 / 2,2, \ldots$
C) $\mathrm{m}=0, \pm 1, \pm 2, \ldots$
D) $\mathrm{m}=2 \pi \mathrm{n}$ where $\mathrm{n}=0, \pm 1, \pm 2, \ldots$
E) None of these

Answer: C.

QM1-73. Apart from normalization, the spherical harmonic $\mathrm{Y}_{\ell}^{\ell}(\theta, \phi)=(\sin \theta)^{\ell} \exp (\mathrm{i} \ell \phi)$. The zero-angular momentum state Y_{0}^{0}..
A) has no θ, ϕ dependence: it is a constant
B) depends on θ only; it has no ϕ dependence
C) depends on ϕ only; it has no θ dependence
D) depends on both θ and ϕ

Answer: A.

QM1-74. Normalization $\int_{0}^{2 \pi} \mathrm{~d} \phi \int_{0}^{\pi} \mathrm{d} \theta \sin \theta\left|\mathrm{Y}_{0}^{0}\right|^{2}=1$ requires that $Y_{0}^{0}=$
A) 1
B) 4π
C) $\frac{1}{4 \pi}$
D) $\frac{1}{\sqrt{4 \pi}}$
E) None of these

Answer: D.

QM1-75. True (A) or False (B) ?
Any arbitrary physical state of an electron bound in the H -atom potential can always be written as

$$
\psi_{\mathrm{n} \ell \mathrm{~m}}(\mathrm{r}, \theta, \phi)=\mathrm{R}_{\mathrm{n} \ell}(\mathrm{r}) \mathrm{Y}_{\ell}^{\mathrm{m}}(\theta, \phi)
$$

with suitable choice of $n, \boldsymbol{\ell}$, and m.

Answer: B. Most of you got this one wrong in class. The correct statement many of you were thinking about was, "Any arbitrary physical state of an electron bound in the H -atom can be written as a linear superposition of the energy eigenstates."

QM1-76. A particle in a 1D Harmonic oscillator is in the state $\Psi(\mathrm{x})=\sum_{\mathrm{n}} \mathrm{c}_{\mathrm{n}} \mathrm{u}_{\mathrm{n}}(\mathrm{x})$ where $\mathrm{u}_{\mathrm{n}}(\mathrm{x})$ is the $\mathrm{n}^{\text {th }}$ energy eigenstate $\hat{H} u_{n}=E_{n} u_{n}$. A measurement of the energy is made. What is the probability that result of the measurement is the value E_{m} ?
A) $\left\langle\mathrm{c}_{\mathrm{m}} \mid \Psi(\mathrm{x})\right\rangle$
B) $\left|\left\langle c_{m} \mid \Psi(x)\right\rangle\right|^{2}$
C) $\left|\left\langle u_{m} \mid \Psi(x)\right\rangle\right|^{2}$
D) $\left\langle\mathrm{u}_{\mathrm{m}} \mid \Psi(\mathrm{x})\right\rangle$
E) c_{m}

Answer: C

QM1-77. Consider an electron in the ground state of an H -atom:
The wavefunction is $\psi(r)=A \exp \left(-r / a_{0}\right)$ Where is the electron more likely to be found?
A) Within dr of the origin $(\mathrm{r}=0)$
B) Within dr of a distance $r=a_{0}$ from the origin?

Answer: B. Remember, the volume element contains the factor r^{2}.

QM1-78. Consider the object formed by placing a ket to the left of a bra like so: $|\mathrm{f}\rangle\langle\mathrm{g}|$. This thing is best described as...
A) nonsense. This is a meaningless combination.
B) a functional (transforms a function or ket into a number)
C) a function (transforms a number into a number)
D) an operator (transforms a function or ket into another function or ket).
E) None of these.

Answer: D.

QM1-79. Consider the object formed by placing a bra to the left of a operator like so: $\langle\mathrm{g}| \hat{\mathrm{Q}}$. This thing is best described as...
A) nonsense. This is a meaningless combination.
B) a functional (transforms a function or ket into a number)
C) a function (transforms a number into a number)
D) an operator (transforms a function or ket into another function or ket).
E) None of these.

Answer: B.

QM1-80. Consider the state $|\psi\rangle=\mathrm{c}_{1}|1\rangle+\mathrm{c}_{2}|2\rangle$. What is $\hat{\mathrm{P}}_{2}|\psi\rangle$, where $\hat{\mathrm{P}}_{2}=|2\rangle\langle 2|$ is the projection operator for the state $|2\rangle$?
A) C_{2}
B) $|2\rangle$
C) $\mathrm{C}_{2}|2\rangle$
D) $\mathrm{c}_{2} *\langle 2|$
E) 0

Answer: C.

QM1-81. Consider the state $|\psi\rangle=\mathrm{c}_{1}|1\rangle+\mathrm{c}_{2}|2\rangle$. What is $\hat{\mathrm{P}}_{12}|\psi\rangle$, where $\hat{\mathrm{P}}_{12}=|1\rangle\langle 1|+|2\rangle\langle 2|$?
A) $|\psi\rangle=\mathrm{c}_{1}|1\rangle+\mathrm{c}_{2}|2\rangle$
B) $|1\rangle+|2\rangle$
C) 0
D) $\langle\psi|=c_{1}^{*}\langle 1|+c_{2}^{*}\langle 2|$
E) None of these

Answer: A.
QM1-82. If the state $|\psi\rangle=\mathrm{c}_{1}|1\rangle+\mathrm{c}_{2}|2\rangle$, as well as the basis states $|1\rangle$ and $|2\rangle$ are normalized, then the state $\hat{P}_{1}|\psi\rangle=|1\rangle\langle 1 \mid \psi\rangle=c_{1}|1\rangle$ is
A) normalized
B) not normalized.

Answer: B (unless $\mathrm{c}_{1}=1$ and $\mathrm{c}_{2}=0$.)

QM1-83. Consider two kets and their corresponding column vectors:

$$
|\Psi\rangle=\left(\begin{array}{c}
1 \\
1 \\
\sqrt{2}
\end{array}\right) \quad|\phi\rangle=\left(\begin{array}{c}
1 \\
1 \\
-\sqrt{2}
\end{array}\right)
$$

Are these two state orthogonal? Is $\langle\psi \mid \phi\rangle=0$?
A) Yes
B) No

Answer: A.

Are these states normalized? A) Yes
B) No

Answer: B.

QM1-84. Consider a Hilbert space spanned by three energy eigenstates:
$\hat{H}|n\rangle=E_{n}|n\rangle, \quad n=1,2,3$. In this space, what is the matrix corresponding to the Hamiltonian?
A) $\left(\begin{array}{ccc}E_{1} & E_{2} & E_{3} \\ E_{1} & E_{2} & E_{3} \\ E_{1} & E_{2} & E_{3}\end{array}\right)$
B) $\left(\begin{array}{lll}E_{1} & 0 & 0 \\ 0 & E_{2} & 0 \\ 0 & 0 & E_{3}\end{array}\right)$
C)
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
D) $\left(\begin{array}{lll}E_{1} & E_{1} & E_{1} \\ E_{2} & E_{2} & E_{2} \\ E_{3} & E_{3} & E_{3}\end{array}\right)$
E) None of these

Answer: B.

