Scalar Diffraction Theory and Basic Fourier Optics
[Hecht 10.2.4-10.2.6,10.2.8, 11.2-11.3 or Fowles Ch. 5]

Scalar Electromagnetic theory:

u(P,t) = Re[U(P)ej'- m] monochromatic wave

P :position f:time ® = 27nv :optical frequency
u(P, t) represents the £ or H field strength for a particular transverse polarization component

U(P) : represents the complex field amplitude

UP) = upye uw(P) - real

Diffraction:
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Approximations:

1. We impose the boundary condition on U, that I/ = 0 on the screen.
2. The field in the aperture X is not affected by the presence of the screen.

1 exp(jkry;)
/ = —||U —d
U(P,) ﬁuj;'[[ (P) -~ 5
z .
o expanding
(701> ] spherical

This equation expresses the Huygens-Fresnel principle: The observed field is expressed as a superpo-
U(P,)
in

sition of point sources in the aperture, with a weighting factor




Fresnel approximation

Huygens-Fresnel mtegral in rectangular coordinates:
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The Fresnel approximation involves setting: r,; =z 1in the denommator, and
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This 15 equivalent to the paraxial approximation in ray oplics.
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Let’s examine the validity of the Fresnel approximation in the Fresnel integral. The next higher order
termn in exponent must be small compared to 1. So the valid range of the Fresnel approximation is:
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For field sizes of | ¢em, 2 = 05pm, we find z» 25 ¢m.

Actually we should look at the effect on the total integral. Upon closer analysis, it is found that the
Fresnel approximation holds for a much closer z. This is referred to as the “near-field region”.
Farther out in z. we can approximate the quadratic phase as flat
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This region is referred to as the “far-field” or Fraunhofer region.
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Now this is exactly the Fourier transform of the aperture distribution with
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The Fraunhofer region is farther out. For the field size of | em, and % = 0.5pm, we find the valid
range of z» 150 meters!

Again, examining the full integral, Fraunhofer 15 actuallv accurate and usable to much closer dis-
tances.
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With plane wave illumination. we have: U(Z.n) = 7,(&.n)
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The width of the central lobe of the diffraction pattern is
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For a circular aperture with radius w: r, = czrc(ﬁ) g =& +n ® radial coordinates
. W

In circular coordinates, we use the Fourier - Bessel transform: 7 {U(q)} gives immediately:
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I(r) = ( ] PW Airy pattern”
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d=1. 22; diameter of Airy disk

Note (see also Fowles Ch. 5):

To calculate the diffraction pattern of a circular aperture, we can choose y as the variable of
integration. If R (w in the above figure) is the radius of the aperture, then the element of area is
taken to be a strip of width dy and length 24/R* —y* .

The amplitude distribution of the diffraction pattern is then given by
_ ikr, R ikysin(6) 2,2
U =Ce I_Re 2{R*—y*dy.

We introduce the quantities Uand p defined by u=y/R and p=kR sin(@) . The integral then

becomes
1 .
J: e”\1-u’du.
This is a standard integral. Its value is 7J, ( p) / p where J; is the Bessel function of the first

kind, order one. The ratio J, ( ,0) / p—3 as p— 0. The irradiance/intensity distribution is

I =|U P’= I{NIT(/))T'

The diffraction pattern is circularly symmetric and consists of a bright central disk surrounded by
concentric circular bands of rapidly diminishing intensity. The bright central area is know as the
Airy disk. It extends to the first dark ring whose size is given by the first zero of the Bessel
function, namely, p =3.832. The angular radius of the first dark ring is thus given by
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which is valid for small values of 6 (in radians). Here D=2R is the diameter of the aperture.

therefore given by



T sinusoidal amplitude
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By convolution, the diffracted amplitude is
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We have neglected interference terms between orders.

Compared to the square aperture, which has the central peak with intensity I,, we now have:



511]0 : zero order
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The “resolving power” of the grating R= peak scparation aration
peak width
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Wave Optics of Lenses
Set of rays parallel to axis Plane Wave
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Rays converging to a focus converging spherical wave

At a given z-plane, the spherical wave has constant phase around circles. The form of the spherical
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i| for a spherical wave converting to the point z. on the axis. A lens modifies

the wave front, for example tfrom planar to spherical.
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How does this happen?



Optical Path Difference

Optical waves travel more slowly in the glass since »n > 1. In glass, the wave is delayed by an amount

as if it travelled a distance »/ in free space. If 7 = /(x,y) [or » = n(x,y) ] then the delay varies with
(x.y) so the wavefront gets distorted.

We can analyze the lens in terms of 1ts phase-delay. The light propagates in the glass as
cos(knz) = cosd , where ¢ = knz 1s the phase delav.

In propagating from plane P, to P,. the light travels a distance A= A + A, in the glass and a distance
A.— A 1in air, where A, is the thickness at the thickest part of the lens. The phase delay depends on

(x.¥):

O(x,v) = knA(xy) + E[As — A(x, v)]

= Ao+ k(n— DA(xY)

We can calculate A, assuming spherical surfaces. Recall the sign convention for the surface radii:

.

positive radius  negative radius
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In the paraxial approximation (x”+v~) « R] 5, S0
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This gives a phase delay:
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Apart from the constant delay knA.. the phase delay 1s:
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A plane wave incident on the lens has a constant phase. After passing through the lens, the phase is
given above. This has the form of a spherical wave. converging to a noint at a distance 7. where
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7 1s the focal length of the lens. This expression 1s 1dentical to what we found from the ray optics anal-
Vsis.



Diffraction Theory of a Lens

We have previously seen that light passing through a lens experiences a phasc delay given by:

Q(x,y) = cxp[ Jh(n i){" 3 }(RL R—ﬂ (negiecting the constant phase)

The focal length. /" is given by:
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Note: the incident plane-wave is converted to a spherical wave converging to a point at /* behind the
lens (f positive) or diverging from the point at / in front of lens (/" negative).
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Diffraction from the lens punil

Suppose the lens is illuminated by a plane wave, amplitude A. The lens “pupil function” is P(x, 1) .

The full effect of the lens 1s  U/(x,») = ¢(x,»)P(x, )
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We now use the Fresnel formula to find the amplitude at the “back focal plane™ z = f
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This is precisely the Fraunhofer diffraction pattern of P ! Note that a large z criterion does not apply

here.



The focal plane amplitude distribution is a Fourier transform of the lens pupil function P¢x,y), multi-

plied by a quadratic phase term. However, the intensity distribution is exactly
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Example: a circular lens, with radius w

P = circ:(fj (¢ =x"+5)

}\_, b bl
let h(r) = FP(hzyq)] = .7[circ( izqﬂ (= 1[2+Vh)
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The spot diameter is d =1.22— = 1.225

w

The resolution of the lens as defined by the “Rayleigh” criterion is d /2=0.611/6. For a

small angle 0, d /2=0.611/sin8 = 0.61% .
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DIFFRACTION

This is the criterion for Fraunhofer diffraction. If this condition does
not obtain, the curvature of the wave front becomes important and
the diffraction is of the Fresnel type. Similar considerations apply in
the case of diffraction by an opaque object or obstacle. Then 8 is the
linear size of the object. (Note that Babinet’s principle applies here.)

Examples of Fraunhofer and Fresnel diffraction by various types
of apertures are treated in the sections that follow. Since the Fraun-
hofer case is, in general, mathematically simpler than the Fresnel
case, Fraunhofer diffraction will be discussed first.

5.4 Fraunhofer Diffraction Patterns

The usual experimental arrangement for observing Fraunhofer dif-
fraction is shown in Figure 5.7. Here the aperture is coherently

Collimating
lens

Focusing
lens

Focal plane

Figure 5.7. Arrangement for observing Fraunhofer diffraction.

illuminated by means of a point monochromatic source and a colli-
mating lens. A second lens is placed behind the aperture as shown.
The incident and diffracted wave fronts are therefore strictly plane,
and the Fraunhofer case is rigorously valid. In applying the Fresnel-
Kirchhoff formula [Equation (5.11)] to the calculation of the diffrac-
tion patterns, the following simplifying approximations are taken to be
valid:

(1) The angular spread of the diffracted light is small enough for
the obliquity factor [cos (m,r) — cos (n,r'})] not to vary appre-
ciably over the aperture and to be taken outside the integral.

(2) The quantity e*'[r' is very nearly constant and can be taken
outside the integral.

5.4 * FRAUNHOFER DIFFRACTION PATTERNS

(3) The variation of the remaining factor ¢*7/r over the aperture
comes principally from the exponential part, so the factor 1/r
can be replaced by its mean value and taken outside the in-
tegral.

Consequently, the Fresnel-Kirchhoff formula reduces to the very
simple equation

U,=C \ % e dod (5.16)
where all constant factors have been lumped into one constant C. The
formula above states that the distribution of the diffracted light is ob-

tained simply by integrating the phase factor ¢*" over the aperture.

The Single Slit The case of diffraction by a single narrow slit is
treated here as a one-dimensional problem. Let the slit be of length L

+b/2

el

—h/2 Focusing
lens

Figure 5.8. Definition of the variables for Fraunhofer diffraction by a single
slit.

and of width b. The element of area is then d&/ = L dy as indicated in
Figure 5.8. Furthermore, we can express r as

r=r,+ysiné . eI

where r, is the value of r for y = 0, and where 6 is the angle shown.
The diffraction formula (5.16) then yields

+bi2
U = Cetkre % elkysinb | &%
—biz ‘ (5.18)
~ 2 Cetkro L sin (kb sin 6) _ Ammu mV
k sin 6 B

where 8 = tkb sin 0, and C' = ¢"*™ CbL is merely another constant.
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Thus C’ (sin B/B) is the total amplitude of the light diffracted in a
given direction defined by 8. This light is brought to a focus by the
second lens, and the corresponding irradiance distribution in the focal
plane is given by the expression

H _Q_w H ~o AMWMVN G.Ev

where I, = |CLb2, which is the irradiance for # = 0. The distribution
is plotted in Figure 5.9. The maximum value occurs at 6 = 0, and zero

(sin B/8)*=1/1,

14

/ 2w In
0 T — .

—3r =27 —n
Figure 5.9. Fraunhofer diffraction pattern of a single slit.
values occur for 8=z, x2m, ..., and so forth Secondary

maxima of rapidly diminishing value occur between these zero values.
Thus the diffraction pattern at the focal plane consists of a central
bright band. On either side there are alternating bright and dark
bands. Table 5.1 gives the relative values of I of the first three sec-

Table 5.1. RELATIVE VALUES OF THE MAXIMA OF DIFFRACTION
PATTERNS OF RECTANGULAR AND CIRCULAR APERTURES

Rectangular Circular
Central Max 1 1
Ist Max 0.0496 0.0174
2d Max 0.0168 0.0042
3rd Max 0.0083 0.0016

e AT AN At AT

5.4 + FRAUNHOFER DIFFRACTION PATTERNS

ondary maxima. The first minimum, 8 = , corresponds to

mEmNWmHV (5.20)
kb b '
Thus, for a given wavelength, the angular width of the diffraction pat-
tern varies inversely with the slit width, and the amplitude of the cen-
tral maximum is proportional to the area of the slit. For very narrow
slits the pattern is dim but wide. It shrinks and becomes brighter as
the slit is widened.

The Rectangular Aperture The case of diffraction by a single aper-
ture of rectangular shape is treated in the same way as the single slit,
except that one must now integrate in two dimensions, say x and y as
shown in Figure 5.10. It is left as a problem to show that the ir-

Figure 5.10. Rectangular mcﬂ@.&.

radiance distribution is m?m:‘ by the product of two single-slit dis-
tribution functions. (See Section 5.6.) The result is

. N. w
,~H~o Am:.wgv Am:mmv a.uc
where a = tka sin ¢, 8= 4kb sin 6. The dimensions of the aperture
are a and b and the angles ¢ and @ define the direction of the
diffracted ray. The resulting diffraction pattern (Figure 5.11) has lines
of zero Iirradiance defined by « ='s4q, 27, ..., and
B==m, =27 . . . . As with the slit, the scale of the diffraction pat-
tern bears an inverse relationship to the scale of the aperture.

The Circular Aperture To calculate the diffraction pattern of a cir-
cular aperture, we choose y as the variable of integration, as in the
case of the single slit. If R is the radius of the aperture, then the
element of area is taken to be a strip of width dy and length
2V R? — y* (Figure 5.12).

The amplitude distribution of the diffraction pattern is then given
by

+R

etkysind 2/ RET y2 dy (5.22)
R

Q — thﬁé \‘.
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Figure 5.12. Circular aperture.

We introduce the quantities « and p defined by u = y/R and p = kR
sin 6. The integral in Equation 5.22 then becomes

+1
% e V1 —u? du (5.23)

-1

5.4 + FRAUNHOFER DIFFRACTION PATTERNS

This is a standard integral. Its value is wJ,(p)/p where J; is the Bessel
function of the first kind, order one [27]. The ratio J,(p)/p —> % as
p — 0. The irradiance distribution is therefore given by

N
i1=1, ﬁm\_%mg G.g
where 1, = (CrR?)?, which is the intensity for § = 0.

A graph of the intensity function is shown in Figure 5.13. The
diffraction pattern is circularly symmetric and consists of a bright cen-

2/, (p) /oY =1/1,

Figure 5.13. Fraunhofer diffraction pattern of a circular aperture.

tral disk surrounded by concentric circular bands of rapidly dimin-
ishing intensity. The bright central area is known as the Airy disk. It
extends to the first dark ring whose size is given by the first zero of
the Bessel function, namely, p = 3.832. The angular radius of the first
dark ring is thus given by

g 3832 _ 122
! kR D

which is valid for small values of §. Here D = 2R is the diameter of
the aperture,

8 (5.25)
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—r Y

Figure 5.16. Fraunhofer diffraction pattern of a double-slit aperture.

Multiple Slits. Diffraction Gratings Let the aperture consist of a
grating, that is, a large number N of identical parallel slits of width b
and separation A (Figure 5.17). The evaluation of the diffractional in-
tegral is carried out in a manner similar to that of the double slit:

h+b h+b (N—1)h+D
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Figure 5.17. Muitiple-slit aperture or diffraction grating.
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where 8 = }kb sin 8 and y = $kh sin 6. This yields the following inten-
sity distribution function:

_ sin mVN A sin Ny VM
=1, A 3 N sin y (5.30)

The factor N has been inserted in order to normalize the expression.
This makes I = I, when 6 = 0.

Again the single-slit factor (sin B8/B)* appears as the envelope of
the diffraction pattern. Principal maxima occur within the envelope at
y=nm, n=0,1,2, ..., thatis,

nh=hsin 6 (5.31)

which is the grating formula giving the relation between wavelength
and angle of diffraction. The integer n is called the order of diffrac-
tion.

Secondary maxima occur near y = 3w/2N, 57/2N, and so forth,
and zeros occur at y = #/N, 2@/N, 3=/N. . . . A graph is shown in
Figure 5.18(a). If the slits are very narrow, then the factor sin
B/B =~ 1. The first few primary maxima, then, all have approximately
the same value, namely, f,.

Resolving Power of a Grating The angular width of a principal fringe,
that is, the separation between the peak and the adjacent minimum, is
found by setting the'change of the quantity Ny equal to 7, thatis, Ay
= a/N = tkh cos 6 A9, or

— YA
Nh cos 6

Thus if NV is made very large, then A6 is very small, and the diffrac-
tion pattern consists of a series of sharp fringes corresponding to the
different orders n =0, =1, =2, and so forth [Figure 5.18(b), (¢)]. On
the other hand for a given order the dependence of 6 on the wavelength
[Equation (5.31)] gives by differentiation v

AB (5.32)

n A
=—— 5.33
Ad hcos @ €39
This is the angular separation between two spectral lines differing in
wavelength by AM. Combining Equation (5.32) and (5.33), we obtain
the resolving power of a grating spectroscope according to the Ray-
leigh criterion, namely,

A

Wvumu

Nn (5.34)

In words, the resolving power is equal to the number of grooves N
multiplied by the order number n.

123



