Kepler's Laws-20 Jan

- Homework 1
- Due at 6:00am on Thurs, $22^{\text {nd }}$ Jan.
- On angel.msu.edu, go to Lessons>Homework>Homework1.
- The lower grade does not count.
- Clicker
- Register at iClicker.com
- Use your email address
- You may use paper answers 2 times.
- The discovery of the laws of motion, the first science.
- De Revolutionibus Orbium Coelestium, Copernicus, 1543
- Astronomia Nova, Kepler, 1609
- Philosophiae Naturalis Principia Mathematica, Newton, 1687
- How Kepler figured out the path of Mars from Tyco's observations. Discovery of his three laws.

Kepler at 39, Sternwarte Kremsmünster http://members.nextra.at/stewar/

Copernicus	$1473-1543$
Columbus sails	1492
Tycho Brahe	$1546-1601$
Shakespeare	$1564-1616$
Johannes Kepler	$1571-1630$
Jamestown	1607
King James Bible	1611
Harvard College	1636
Isaac Newton	$1642-1727$

Questions on reading

1. When Kepler was a college student, the most accurate description of the motion of planets uses the terms
a. Velocity, position, \& acceleration
b. Circular orbits
c. Elliptical orbits
2. Same question for Newton
3. Today the most accurate description of the motion of planets uses the terms
a. Velocity, position, \& acceleration
b. Circular orbits
c. Elliptical orbits

Kepler
 analyzes Tycho's data

- Kepler was Tycho’s assistant
- 20 yrs' data on planetary motions.
- Tycho tried to fit data with Ptolemy-like model.
- Kepler analyzed the data
- Found 3-d orbits from 2-d positions in the sky
- Concentrated on orbit of Mars.
- Had to subtract off Earth's (imperfectly known) orbit.
- Discovered 3 "laws," which describe the motions of the planets.

- Their meeting at Benatek (in Czechoslovakia)
- ...on 4 February 1600, Tycho de Brahe and Johannes Keplerus, co-founders of a new universe, met face to face, silver nose to scabby cheek. Tycho was fifty-three, Kepler, twenty-nine. Tycho was an aristocrat, Kepler a plebian. Koestler, The Sleepwalkers, p302

Kepler’s First Law 1605

- Orbit of a planet is an ellipse, with the sun at one focus.
- Definition of an ellipse
- (Distance between planet \& focus \#1) + (distance between planet \& focus \#2) is the same for the entire orbit.
- This was an unexpected result in Kepler's time.
- Ellipse is a simply defined shape, not any shape. The motion of the planets must have a deeper cause.
- If the sun is at a focus, it must affect the planet's motion.

Sun, at one focus

Kepler’s Second Law 1602

- The line joining the planet and the sun sweeps out equal areas of space in equal amounts of time.
- Planet moves
- more slowly when it is far from sun
- more rapidly when close to sun

Kepler2 simulation

Kepler's Laws

- Law 1: Orbit of a planet is an ellipse, with the sun at one focus.
- Law 2: The line joining the planet and the sun sweeps out equal areas of space in equal amounts of time.

2. Winter is a few days shorter than summer for us in the northern hemisphere. Therefore Earth is at A, B, C, or D in January?

- What do I need to find out before I can answer the question?

Kepler's Third Law 1618

- $\mathrm{P}^{2}=\mathrm{a}^{3}$
- $P=$ period of orbit, in years
- a = semi-major axis of orbit, in AU. (Average Earth-sun distance is 1 AU .)

Kepler's Third Law 1618

- $P^{2}=a^{3}$
- $P=$ period of orbit, in years
- a = semi-major axis of orbit, in AU. (Average Earth-sun distance is 1 AU.)

1. A $10^{\text {th }}$ object (planet?) was found beyond the orbit of Pluto. __ has the shorter period.
A. Pluto
B. $10^{\text {th }}$ object
C. Not enough information to answer.

- What do I need to find out before I can answer the question?

Questions concerning Kepler's Laws

- A planet's path is an ellipse with the sun at one focus.
- A planet "sweeps" out the same area in an equal amount of time.
- The planets' periods P and semi-major axes a are related by

$$
\mathrm{P}^{2}=\mathrm{a}^{3}
$$

- A planet, which has an almost circular orbit, and a comet, which has a highly elliptical orbit, have the same periods. Draw their orbits on a single picture.

1. Grading: sun's position
2. Grading: lengths of major axes.

- What do I need to find out?

Questions concerning Kepler's Laws

- A planet's path is an ellipse with the sun at one focus.
- A planet "sweeps" out the same area in an equal amount of time.
- The planets' periods P and semi-major axes a are related by
$P^{2}=a^{3}$
- A planet, which has an almost circular orbit, and a comet, which has a highly elliptical orbit, have the same periods. Draw their orbits on a single picture.

1. Grading: sun's position
A. Centered for comet
B. Offset for comet
2. Grading: lengths of major axes.
A. Same for both
B. Different

The Motions of the Planets

Ptolemy
140 AD

Copernicus
1543

Simpler model

Kepler 1609

More accurate description of data

Kepler's 3 Laws

- Orbit of a planet is an ellipse, with the sun at one focus.
- The straight line joining the planet and the sun sweeps out equal areas of space in equal amounts of time.
- $P^{2}=a^{3}$
- But why?
- These are descriptive laws, but there must be deeper reasons for the planets to do this.

Newton's Laws of Motion \& Gravity

- De Revolutionibus Orbium Coelestium, Copernicus, 1543

Astronomia Nova, Kepler, 1609
Philosophiae Naturalis Principia Mathematica, Newton, 1687

- Newton invented calculus (MTH 132) \& mechanics (PHY 183)
- Nature and Nature's laws lay hid in night:/ God said, Let Newton be! and all was light. -Newton's epitaph by Alexander Pope
- Newton: Same laws apply to a falling apple \& moving planet.
- Description of motion
- Gravity $\propto 1 / R^{2}$ implies K's $3^{\text {rd }}$ Law

Isaac Newton (at 47) by Godfrey Kneller Trustees of the Portsmouth Estate www.huntington.org/LibraryDiv/Newton/Newtonexhibit.htm

Copernicus	$1473-1543$
Columbus sails	1492
Tycho Brahe	$1546-1601$
Shakespeare	$1564-1616$
Johannes Kepler	$1571-1630$
Jamestown	1607
King James Bible	1611
Harvard College	1636
Isaac Newton	$1642-1727$
George Washington	$1732-1799$

