The Sun

- · We know the most about the sun We can see surface details. · Other stars are points of light.
 - Magnetic fields, wind, flares
- Big questions
 - What powers the sun?
 - Where does carbon come from?
 - How long does the sun live?
 - What happens to the sun when it dies?
- · Lifetime of the sun
 - Chemical reactions - Gravitational energy
 - Nuclear fusion
- Fusion
- 4H→⁴He

Sun viewed with X rays

- Astronomical Horizons Public Talks
 - Telescopes of the Future Jack Baldwin Abrams Planetarium
 - Thursday at 7:30pm
 - First Light for the Spartan Infrared Camera
 - Ed Loh • Thursday, 16 April
- Homework 5
 - Chapters 6, 8, & 9
 - Jovian planets, comets, asteroids, formation of the solar system, extra-solar planets.
 - Due 6:00am, Wed, 25 March

- Test 2 Results on
 - www.loncapa.msu.edu Read announcement on
 - angel for instructions.
 - Average 21/35, 61%
 - Average Test 1: 58%
- Overall grades
 - On angel, "Reports" tab - Excused absences have not been entered
 - Curve on angel announcements
 - Average 2.9 - More than half of the course grade is left.
 - 17% for Test 3 35% for Final Exam

19th Century "Energy Crisis"

- Luminosity of sun L=4×10²⁶Watt
- Mass m=2×10³⁰kg
- How long will the sun last if the energy is produced by burning coal? $C+O_2 \rightarrow CO_2$
 - Life time = m×(E/m)/L
 - E/m = 9MJ/kg for burning coal
 - 1500 years
- Earth is much older than that.

Extract Energy from Gravity

- Luminosity of sun: L=4×1026Watt
- Mass m=2×1030kg
- . How long will the sun last if the energy is produced by the sun contracting?
- If material falls from R_{sun} to 0.9R_s
- $\begin{array}{l} \operatorname{Energy} = 1/2 \ m \ v^2 = m \ g \ h = m \ (GM_{sun}/R_{sun}^2)(\\ 0.1R_{sun}) \\ \ Life \ time = m \times (E/m)/L \\ \ 1.6 \ Million \ years \end{array}$
- Kelvin's calculation includes material falling not just on surface. Got 100 Myr.
 Kelvin thought earth could be this old, but later in 19th century, age of earth was shown to be much
- larger.

William Thomson Lord Kelvin 1824-1907

E=mc²

- Crisis: No solution with physics of 19th century.
- Einstein's new theory (1906) - $E = m c^2$.
- Energy = mass × (speed of light)².
- Energy can change into mass, and mass can change into energy.
 Changing a little mass produces a
- Changing a little mass produces a lot of energy. Compare kinetic energy ½ m v² with m c².
 Speed of light c = 300,000 km/s
 - Air in blast furnace moves at 0.2 km/s

- Chemical reaction C+O₂ \rightarrow CO₂
- E=m c²/100,000,000,000.
 One part in 100 billion of mass disappears and changes into energy.
- Sun contracts by 10% - E=m c²/1,000,000. One part in a million of mass
- in a million of mass disappears and changes into energy.

Nuclear fusion

- In a nuclear reaction, converting a significant fraction of the mass to energy is possible.
- Hans Bethe figured out the nuclear physics of how this happens.
- $4 \, {}^{1}\text{H} \rightarrow {}^{4}\text{He} + \text{neutrinos} + 2e^{+} + \text{energy}$ - $4 \, \text{hydrogen nuclei fuse}$
- One helium nucleus is produced
- 1. Which is heavier? A box of hydrogen and a box of helium, neutrinos, and positrons made from the hydrogen?
 - A. H
 - B. Products: He, neutrinos, and positrons
 - C. Mass is the same

Hans Bethe 1906-2005

Interior of the sun

- Use physics to construct models
- Energy is generated by nuclear fusion, which depends on temperature and composition.
- Energy move from center, where fusion occurs, to outside, where it radiates into space.
- <u>Gas pressure holds the mass of</u> <u>the parts above.</u>

Solar oscillations with GONG

- Observe motion of the surface caused by sound waves that go deep in the sun
 - Solar seismology
 Similar to applying a
 - Similar to analysis of Earth's interior.
 - Wave pattern reveals interior structure
 - Wave speed depends on composition & temperature

- 3. The sun loses 4 million tons of mass every second. Can you capture some of that mass?
 - A. Yes. Put up a windmill.
 - B. You cannot capture mass that has disappeared.

