

- Layer from which light escapes directly into space.
 - Photosphere is what we see.
 - Light from lower layers scatters.
- Q: Suppose we observe the neutrinos from the sun. The size of the sun when viewed with neutrinos is
 - A. Smaller
 - B. Same
 - C. Bigger
- Low density and pressure
 - 10⁻⁴ density in this room
 - 0.1 pressure in this room
- *Hot* (5800 K)
- Granules

•

• Tops of convection bubbles. 700km size.

Bob Stein's simulation movie

- Chromosphere
 - Transparent gas layer, reaches 2000-3000 km above photosphere.
 - Hotter than photosphere T ~5,000-10,000° K
 - Emission lines
- Corona
 - T > 1,000,000° K
 - Very low density: 10⁻¹⁰ bar.
 - Heated by magnetic energy.
 - Several x diameter of photosphere.
- Solar wind
 - Particles streaming from sun
 - Extends beyond the planets

Corona

Hot-plate model of stars

- Parts of the sun
- Hot-plate model of a star
- Hertzsprung-Russell
 Diagram
- Dwarfs, giants, & white dwarfs

Hot-plate model of stars

- Q1 What quantities determine to a great extent the total amount of light that stars, the sun, a hot plate, and I emit? Composition, Temperature, Size
 - a. C&T
 - b. T&S
 - c. S&C
 - d. All 3

Orion constellation http://lithops.as.arizona.edu/~jill/EPO/Posters/Orion/protoplanets.html

