The dying sun/ creation of elements

- Homework 6 is due Thurs, 2 April at 6:00am
- OBAFGKM extra credit
 - Angel: Lessons>Extra Credit
 - Due 11:55pm, 31 March
- Final exam (new, later time)
 6 May, 3:00-5:00, BPS 1410
- Why does the sun die?
- Life of massive stars
- Creation of elements. Where are uranium & gold created?

After helium is used up			
Reaction	Min. Temp.		
4 ¹ H → ⁴ He	10 ⁷ ° K		
3 ⁴ He → ¹² C	2x10 ⁸ Triple-alpha process		
¹² C + ⁴ He → ¹⁶ O, Ne, Na, Mg	8x10 ⁸		
Ne ➔ O, Mg	1.5x10 ⁹		
O ➔ Mg, S	2x10 ⁹		
Si → Fe peak	3x10 ⁹		
 Contraction heats center Helium starts to burn. 	$H \rightarrow He(core) \qquad H \rightarrow He(shell)$ $Inert H \qquad Inert He$ $He \rightarrow C(shell) \qquad Inert He$ $H \rightarrow He(shell) \qquad Inert He \rightarrow C(core)$ $H \rightarrow He(shell)$		

- Helix nebula
- Gas & dust ejected by star in the middle.
- Ejection occurred several times.
- Wind blows gas into previous ejecta.
- Colors
 - Blue: O
 - Red: H & N

NASA, NOAO, ESA, Hubble Helix Nebula Team, M. Meixner (STScI), and T.A. Rector (NRAO).

What stars do

- Gravity: Center of star always trying to contract • and become more dense and hotter.
- Nuclear burning interrupts this from time to time •
 - High temperature makes high pressure •
 - *Pressure* is what halts gravitational contraction. •

•	Fusing two H nuclei	Fusion
	 Two protons, both positively charged, repel. Requires high speed to 	
	overcome repulsion.	Reaction
•	Q Why does fusing He require a	4 ¹H → ⁴He
higher min 200MK rat	higher minimum temperature, 200MK rather than 10MK2	3 ⁴ He → ¹² C
	a. He is heavier	¹² C + ⁴ He → ¹⁶ O, Ne, Na,
	b. He nucleus has twice as much	Mg
	charge.	Ne ➔ O, Mg
•	C. He is harder to ionize. Model how to answer questions	O ➔ Mg, S
•	that require more than recall of	Si → Fe peak
	facts.	5
	 Does mass affect ability of nuclei to fuse? 	
	 Does charge affect 	
	 Is ionization (removing 	

Reaction	Min. Temp.
4 ¹H → ⁴He	10 MK
3 ⁴ He ➔ ¹² C	200
¹² C + ⁴ He → ¹⁶ O, Ne, Na,	800
Mg	
Ne ➔ O, Mg	1500
O ➔ Mg, S	2000
Si → Fe peak	3000

Neutron capture

- In a supernova, there are free neutrons made by destroying nuclei.
- Nucleus captures neutrons and turns into a heavier nucleus.
- Nucleus may decay into a more stable one.
- Nucleus may capture more neutrons.
- Eventually unstable nuclei decay into stable ones. Some heavy as uranium

