Our Milky Way Galaxy

- What is our Milky Way Galaxy made of?
- Stars and gas orbit the galaxy.
- Dark, unseen, matter makes up most of the mass.

- Test 3 (New date)
- Thurs, 9 April
- One cheat sheet
- Study guide \& practice test
- Link on syllabus
- Add Jovian planets
- Ignore neutron stars \& black holes
- Class of 3/26 (history of low and high-mass stars) is included. Today's class is not included.
- Missouri Club (Show me)
- Tonight, 7:15-8:15pm
- room 1420
- Observatory open house
- Fri \& Sat, 9:00-11:00pm.
- MSU Observatory (south of Ag Pavilion)
- Weather permitting.
- Disk
- Stars, gas, and dust
- Young \& old stars
- Motion is circular
- Bulge
- Stars are dense
- Motion is elliptical in all directions
- Halo
- Stars are sparse; dark matter
- No young stars
- Spherical in shape
- Motion is elliptical in all directions
- Globular clusters

Parts of the Milky Way

You are the sun. The students in the room are O stars. The center of the Milky Way is drawn on the board.

1. Where is the disk?
a. All around, including up \& down
b. Above the ceiling
c. Toward the front of the room

Parts of the Milky Way

d. Within a few meters of the floor
2. Where is the halo?
3. Where is the dust \& gas?
4. Where do you see the most stars?

- Disk stars move in a circle around the center of the Milky Way. Orbits dip above and below the plane of the disk.
- Halo and bulge stars move in long, skinny orbits in all directions.
- Why do some stars move in a circle and others move in an skinny orbit?

5. Why does the earth move in a circle today?
a. Planets are heavenly objects.
b. It moved in a circle yesterday.

Orbits of stars

- Why do some stars move in a circle and others move in an skinny orbit?

6. Why does the earth move in a circle today?
a. Planets are heavenly objects.
b. It moved in a circle yesterday.
7. Why does the earth move in a circle?
a. The material from which the earth formed moved in a circle.

- Orbit determined at star's birth.
- Gas that formed disk stars was orbiting MW in a circle
- 1. Gas that formed halo stars was streaming toward MW. 2. Halo stars were in a little galaxy that got caught by MW.

Orbits of stars

Galaxies fill space around us

- Earth

6 Mm in radius. 1/50 light-sec

- Solar system
- Earth is 1 AU from sun. 1/63,000 light year, 9 light-min $(20,000 x)$
- Nearest star
- Distance to Proxima Centauri is 4 ly (200,000x)
- Milky Way galaxy
- Distance to center is 30 kly $(10,000 x)$
- Nearest big galaxy
- Distance to Andromeda is 2 Mly (100x)
- Farthest galaxy seen
- Distance is 10 Bly (5,000x)

Loneliest object

- Earth

6 Mm in radius. 1/50 light-sec

- Solar system
- Earth is 1 AU from sun. 1/63,000 light-year, 500 ls (20,000x)
- Nearest star
- Distance to Proxima Centauri is 4 ly $(200,000 x)$
- Milky Way galaxy
- Distance to center is 30 kly (10,000x)
- Nearest big galaxy
- Distance to Andromeda is 2 Mly (100x)
- Planets are 10,000 earthradii away from earth. Analogy: you are 10,000 persons (12mi) away from the next person.

1. Which is the loneliest kind of object?
a. Earth to next planet
b. Solar system to next star
c. Star-star to center of MW
d. MW to next galaxy

- Farthest galaxy seen
- Distance is 10 Bly ($5,000 \mathrm{x}$)

Loneliest object

- Earth

6Mm in radius. 1/50 light-sec

- Solar system
- Earth is 1 AU from sun. 1/63,000 light-year, 500 ls (20,000x)
- Nearest star
- Distance to Proxima Centauri is 4 ly $(200,000 x)$
- Milky Way galaxy
- Distance to center is 30 kly (10,000x)
- Planets are 10,000 earth-radii away from earth. Analogy: you are 10,000 persons (12mi) away from the next person.

1. Which is the loneliest kind of object?
a. Earth to next planet (12mi)
b. Solar system to next star (250mi)
c. Star-star to center of MW (12mi)

- Nearest big galaxy
d. MW to next galaxy (200m)
- Distance to Andromeda is 2 Mly (100x)
- Farthest galaxy seen
- Distance is 10 Bly (5,000x)

Weighing a Galaxy

- What is the mass of a galaxy?
- Answer before 1974: Mass is that of stars \& gas
- Actual answer: Most

Fritz Zwicky 1898-1974 Vera Rubin 1928www.astrosurf.org/lombry /Images/zwickyt.jpg cwp.library.ucla.edu/ images/rubin.1.jpg mass is not that of sta b1974: Mass here \& gas

- Most mass is dark
- Dark mass is less concentrated.
- How to measur a 1974: Most mass here

Weighing Eros

- Near Earth Rendezvous (NEAR) orbited the asteroid Eros (and landed).
- Eros

- 20mi long, 8mi wide (size of Lansing)
- Gravity is 1000 times weaker
- You can leap 1000 times farther - $1 / 2 v^{2}=g h$
- Speed limit is 20 mph
- $\mathrm{v}^{2}=\mathrm{g}$ R
- On Earth, a ball dropped 1m takes 0.45 s . How long would that take on Eros?

$$
\begin{aligned}
& -1 / 2 \mathrm{v}^{2}=\mathrm{g} \mathrm{~h} ; \mathrm{v}=\mathrm{g} \mathrm{t} \mathrm{t} ; \mathrm{t}=(2 \mathrm{~h} / \mathrm{g})^{1 / 2} \\
& \cdot \mathrm{t}=0.45 \mathrm{~s}(1000)^{1 / 2}=14 \mathrm{~s}
\end{aligned}
$$

1. How can you measure the mass of Eros with the satellite (without landing)?

Weighing the Sun

- To find mass of sun, measure period T \& size R of a planet's orbit.
- Kepler's $3^{\text {rd }}$ Law
$\mathrm{GM}=4 \pi^{2} \mathrm{R}^{3} / \mathrm{T}^{2}$
- $\quad M=R^{3} / T^{2}$ for R in $A U, T$ in years, and M in solar masses.

2. Under influence of the gravity of the sun, a planet moves a given distance. If the time is short, the mass of the sun is
A. greater.
B. less.

Mass	Test object	Motion	Behavior if more massive
Sun	Earth	An orbit	
Eros			
Earth	A ball	Drops 1m	Time is shorter
Galaxy			

