

Simplicio's questions about Hubble's Law

- Hubble's law v = H D
 - H=100km/s/Mpc (approx)
- Coma is 300MLy from us, and it is moving away from us at 6000km/s.

Simplicio: Galaxy NGC 2323, which is 600MLy away, moves at 12,000km/s.

- 1. What is the basis of Simplicio's reasoning?
 - a. Simplicio is guessing
 - b. Big objects move fast
 - c. Simplicio recalls how fast NGC2323 is moving
 - d. Hubble's Law

Sagredo, Simplicio, and Salviati Galileo's *Dialogue Concerning Two Chief World Systems*

- d. No, (d) is incorrect.
- e. Yes

d. Andromeda is nearby.

Age of the universe

- I am driving down I96 at 50mph. I am 50mi from home. How long have I been driving?
 - Time = distance / speed
- Hubble's Law: v = H D
- 1. How old is the universe?
 - A. H
 - B. 1/H
 - C. H²
 - D. 1/H²
- Measuring Hubble's constant is a key step in finding the age of the universe.
- This method is not perfectly accurate because galaxies may slow down or speed up. Need to measure slowing or speed-up.
- Age is 13Byr.
 - Age of solar system is 4.5Byr. SS is 1/3 age of universe.

Quasars & Active Galactic Nuclei

- All big galaxies have a black hole in the nucleus.
- In quasars, the nucleus is so bright that that the galaxy looks like a point.
- Mass of the black hole 3,000,000,000M_☉ in M87 3,000,000M_☉ in Milky Way
- Material can be ejected along the spin axis.

Measurement of Mass of Black Hole

- The bright center may be a dense concentration of stars.
- 1. What must you measure to find the mass of black hole in M87, a big elliptical galaxy?
 - a. Luminosity of nucleus
 - b. Distance to M87
 - c. Size of orbit & speed of something in orbit
 - d. Speed of ejected material

Measurement of Mass of Black Hole To find the mass of • black hole in M87, a big elliptical galaxy, use Kepler's 3rd Law. $Mass = R^{3}/P^{2} = RV^{2}$ R = 60lyV = 800 km/s $M=3Billion M_{\odot}$ $= 3,000,000,000 M_{\odot}$ If the mass were stars, density is 15,000 times that in sun's neighborhood. wavelength

