Radiation from the Big Bang

٠

- Four big discoveries in cosmology
 - Hubble's discovery of the expansion of universe. 1929
 - Radiation from BB. 1965
 - Dark matter. 1930s, 1970s
 - Accelerated expansion. 1998
- BB radiation inspires questions and offers some answers
 - Where did helium come from?
 - Where did radiation come from?
 - What is universe made of?When did the first stars form?
- How did the radiation affect the history of the universe?

- Homework 7

 Due 6:00 pm on Tues, April 28th
 - Just before Missouri Club
 - Missouri (Show Me) Club
 - Tues, April 28th, 7:00-8:00pm
 Room 1415.
 - Final Exam
 - Wed, May 6th, 3:00-5:00
 - Room 1410 (our classroom)
 - One $8\frac{1}{2} \times 11$ cheat sheet.
 - Covers entire course with more emphasis on galaxies & cosmology.
- Please rate your class at – rateyourclass.msu.edu
 - Closes on May 8th.
 - Closes on May 8.

Test 3	
 Your test loncapa.msu.edu Your grades "Report" tab on angel.msu.edu Class average: 27/41 (66%) 75% scored above 23 (56%) 25% scored above 32 (78%) 	 Average has increased significantly Test 1: 58% Test 2: 61% Test 3: 66% Score of top 25% on Test 1 = average score on Test 3. Your grade at end of the course may change. For 52% of students, grade changed by at least 0.5 since midterm. Final exam counts for 35% of grade.

1965 Discovery of Radiation

- Arno Penzias & Bob Wilson at Bell Labs in Holmdel, NJ, postdocs, wanted to use the 20-foot horn antenna from Echo Satellite program to do astronomy.
 - Boss says, "Arno & Bob, go measure the noise of the radio receiver."
- Measured the "noise temperature" of 6.7 K.

- Measured the "noise temperature" at wavelength 30cm. Their result: the temperatures are
 - Total 6.7 K
 - Sky 2.3 K
 - Antenna <u>0.9 K</u>
 - Unaccounted 3.4 K
- Penzias & Wilson, 1965, "A measurement of the excess antenna temperature at 4080Mc/s," ApJ 142, 419
 - "The excess temperature is ... isotropic unpolarized, and free from seasonal variation."

2

1965 Discovery of **Radiation from Big Bang**

- What does radiation from the Big Bang look like? Radiation was emitted when the
 - universe was much smaller. (Coma is now 300M light-years from us. Distance was miniscule then.)
 - Light traveled 13Byr and reached us.
 - There is no unique center of the universe. We are a center.
- 1. Is the radiation from the Big Bang isotropic (look the same in all directions)? Would radiation from the BB change with the seasons?
 - A. Yes. Yes
 - B. No. No
 - C. Yes. No
 - D. No Yes.

Book-burning Universe

- Key idea: When the universe was smaller (when the distance between us and some object was smaller), the temperature was hotter. There is no obvious limit to the temperature.
- At one time, the universe was too hot to have paper. (Paper burns.)
 - Occurs at 451 F = 500 K.
 - (In reality, there was no carbon and no paper at that time.)
- Define the expansion parameter a to be
- a = distance between two objects/ present distance
 Hoag's object is 300 Mpc from the Milky Way.
- 2. Hoag's object is 300 Mpc from the Milky Way. How far was it when the expansion parameter was ¹/₂?
 - A. 600 Mpc
 - B. 300 Mpc
 - C. 150 Mpc
 - D. 1200 Mpc

Book-burning Universe

- Key idea: When the universe was smaller (when the distance between us and some object was smaller), the temperature was hotter. There is no obvious limit to the temperature.
- At one time, the universe was too hot to have paper. (Paper burns.)
 - Occurs at 451 F = 500 K.
 - (In reality, there was no carbon and no paper at that time.)
- Define the expansion parameter a to be
- a = distance between two objects/ present distance
- 2. Hoag's object is 300 Mpc from the Milky Way. How far was it when the U was just hot enough to burn paper?
 - A. 30 Mpc, a=1/10, T=2.7 * 10 = 27K
 - B. 10 Mpc, a=1/30
 - C. 3 Mpc, a = 1/100
 - D. 1 Mpc, a= 1/300

Book-burning Universe

- Key idea: When the universe was smaller (when the distance between us and some object was smaller), the temperature was hotter.
- Implication: <u>There is no obvious</u> <u>limit to the temperature.</u>
- At one time, the universe was too hot to have paper.
- 1. What other familiar things were not possible at one time? What other reactions might have occurred when the universe was smaller & hotter.

