
Programmable Logic Design – I 

Introduction 
In labs 11 and 12 you built simple logic circuits on breadboards using TTL logic 

circuits on 7400 series chips. This process is simple and easy for small circuits. With 
increasing complexity of the logic circuitry the possibility of wiring errors grows and it 
becomes increasingly difficult to debug the circuit. Another problem is the difficulty in 
finding all the needed logic circuitry on available chips. To address these problems the 
electronics industry has developed the concepts of Programmable Logic Devices (PLD’s) 
or Field Programmable Gate Arrays (FPGA’s). The basic idea behind these devices is the 
notion that logic circuitry of arbitrary complexity can be constructed from simple gates 
connected with appropriate links and the technical advance that has made this possible is 
the development of large gate arrays with computer programmable links. The design 
process then consists of specifying the logic design by means of a logic design language 
such as VHDL or by entering it on a schematic layout. A computer program then turns 
this design into a series of instructions that are downloaded into the chip to establish the 
desired logic circuitry.  Facilities are provided to specify the pin out of the logic, to 
control placement of logic circuits on the chip and to impose timing constraints.  

Design Tools 
For our designs we will be using the Xilinx Corporation (www.xilinx.com) ISE 

Foundation 9.2i. We will start by entering our design in the form of a circuit schematic 
but, in later stages of the labs we will use a high level language, VHDL, to benefit from 
its power and flexibility. In our designs we will sample only a few of the features and 
capabilities of this software package which is widely used in the electronics industry 
today. 

Hardware 
We will download our designs into a Digilab D2XL board connected to a Digilab 

Digital I/O board (DI01) shown in Figure 1 below. The FPGA chip on the D2XL board is 
a member of the Spartan II family, the XC2S30, with package type tq144, embodying 
972 logic cells with a total of 30,000 gates. While this size of device was state-of-the-art 
a few years ago, rapid advances in technology have pushed the largest device sizes to 
many millions of gates. 

The D2XL board’s I/O resources are limited to a single pushbutton and one LED 
for use with a test program to verify proper operation. A large variety of I/O devices, 
however, are available on the DI01 board attached to theD2XL by means of two 40 pin 
connectors. Our two experiments will exploit the features of the D2XL/DI01 combination 
to design a number of circuits that will demonstrate the usefulness of this procedure.  



Getting Started 

Hooking up the Hardware 
The circuitry is extremely delicate and can easily be destroyed if handled 

improperly. Static electricity which is easily generated is particularly dangerous and care 
must be taken to wear a grounded wrist strap when handling the circuitry. Your instructor 
will show you how to use it properly. Your two boards should be connected to one 
another, with power cord installed and a programming cable from the parallel port of the 
PC to the JTAG connector of the D2XL attached. Ask your instructor for help if this is 
not the case. 

 
Figure 1: The D2XL and DI01 boards with programming cable attached. 



Testing the D2XL board 

You should have a Xilinx ISE 9.2i icon on your screen. Double click on it to open 
the program. As a first program to download we want to use “Di01Demo”(C:/Digilent/ 
Di01Demo.ise) to test the integrity of the D2XL board and the attached Digital I/O 1 
board. If another project comes up, close it from the “File” menu and use “Open Project” 

from the same menu to open “Di01Demo”. If you are successful you should get a screen 
display like Figure 2. 
You need to double-click on the 3rd line in the top left window to get the display in the 
top right window. These four windows represent the design environment for the project 
with “Sources” in the top left window, the “Processes” for a given Source below it, the 
contents of selected files in the right hand window and text files below. On top of the 
“Sources” window is a tab to select the type of sources to be displayed. In this instance 
the sources are those associated with “Synthesis/Implementation” but we will also be 
interested with sources for “Behavioral Simulation”. Before proceeding we need to check 
that we have selected the proper chip and simulation software. If you right-click the 

 
Figure 2: Project Navigator 



xcs230-tq144 icon and select “Properties” you should pop a window such as shown 
below: 

 
Figure 3: Project Properties 

 
Check that the Device and Package types are correctly selected and under “Simulator” 
choose “ISE Simulator (VHDL/Verilog)” and “VHDL” for Preferred Language. When 
you have satisfied yourself, close the window. 

Extensive help files are available online and at this time it would be a good idea to 
go to the “Help” window, select “Help Topics, FPGA Design, FPGA Design Flows” and 
read the chapter “FPGA Design Flow Overview”. 

To test our board we are going to select the “Synthesis/Implementation” sources, 
select “Di01Demo-Behavioral” and in the “Processes” window expand the “Generate 
Programming File” and then double-click on “Configure Device (iMPACT). Doing this 
puts the program through all of the necessary steps to generate the file for downloading to 
the FPGA and to initiate the downloading process. When asked, choose the Configure 
devices using Boundary Scan bullet and select “Automatically connect a cable and 
identify a Boundary Scan chain”.  You will be asked to assign a new configuration file, 
choose “dio1demo.bit”.  This will happen, of course, only if there are no errors in any of 
the intervening steps. If all goes well you should wind up with a page such as Figure 4. 
Click on the boundary scan tab at the bottom of the window.  Following instructions, 
right-click on the device and select “Program” and if there are no problems success will 
be signaled by a “Program Succeeded” announcement. At this time the 7-segment display 
should be cycling through the numbers 0 to 9, the slide switches should control their 
corresponding LED’s and depressing the push buttons should interrupt the display on the 
7-segment chip opposite the button.  Also, the push button on the D2XL card, when 



depressed, should light up the LED “LD1”. 

 
Figure 4: Programming page 

 



If this is so, then the D2XL board and the DI/O1 board are in proper working order and 
we can go on to our first project. 

Important Xilinx design notes: 
1. Create your own directory right off of the root directory c:\.  All of 

your work must be saved in this directory or in its subdirectories. 
2. Your directory and subdirectories CANNOT contain any spaces. 
3. DO NOT name any of your projects or design elements any 

reserved logical names such as, AND, OR, COUNTER, BUS, etc … 
4. If you ignore any of these three notes, your project will not work.  

You will have to start the project over from the beginning.  
Depending on the project this could cost you a considerable amount 
of time.  In addition, if one of your projects fails for one of these 
three reasons points will be deducted from your lab score. 

5. If implementing your design to your D2XL and D101 boars does not 
work, try restarting the board by disconnecting it from the power 
supply. 

 

Design Project I 
For our first project we will use “Schematic Entry” to design a circuit with a 

single AND gate. We will use “ISE Simulator” to test its proper operation, attach push 
buttons to the two inputs and an LED to the output, download it into the FPGA and test 
its operation.  

Schematic Entry 
Go to the “Help” window, select “Help Topics” and then read the chapter FPGA 

Design/Design Entry/Schematics. Close the current project and do not save the 
configuration file. Select “File” “New Project” to get to the Project Wizard. Choose a 
Project Name, Project Location on “C” disk and Schematic for Top-Level Source Type. 
Check that the appropriate hardware is selected and that “ISE Simulator” is chosen. Do 
not create a new source nor add an old one at this time but continue until the process 
finishes and displays the Design Environment again. Select the 
“Synthesis/Implementation” tab; click on your device name and in the “Processes” 
window “Create New Source”. From the choices given select “Schematic” and give it a 
name of your choosing When the Wizard finishes, a schematic entry window is created. 
Click on the “Symbols” tab, choose “Logic” from the categories in the sources window.  
(If your sources window is too small and you cannot get the symbols or categories scroll 
bars to work, increase the length of the sources window.)  Select “and2” under symbols 
and place it in the schematic entry window. You may wish to magnify the drawing for 
better viewing. Next add input and output buffers to the two inputs and one output using 
the “buf” symbol. You will need the wiring tool to make the connections. Each input 
needs an input marker and the output needs an output marker which can be generated by 



clicking on the I/O Marker icon. Edit the default names to change them to IN_1, IN_2 
and OUT_1 respectively. Save your design and go to “Tools” “Check Schematic” to 
verify your design. If there are no errors you can go on to the next step. Your design 
should look like Figure 5. 

 

Modeling the Design 

 

Figure 6: Timing choices for ISE simulator 

 
Figure 5: AND Logic Design 



We must now model the design to see that it satisfies our design goals. Select the 
“Behavioral Simulation” tab for “Sources”, click on the .sch file and in “Processes” 
create “New Source”, “Test-bench Waveform” and give it some appropriate name. In the 
“Timing Window” of Figure 6 select “Combinatorial” for the clocks and leave everything 
else as it is. The next window, shown in Figure 7, gives you the opportunity of setting a 
train of input pulses to test your logic design. Note that the two inputs should be chosen 

to represent all possibilities for the circuit.  Save your file and go back to the Sources 
window with the “Behavioral Simulation” tab depressed. 

Under processes select “Xilinx ISESimulator”, double click on “Simulate 
Behavioral Model” and you should be rewarded with Figure 8. Check it over to assure 
yourself that the simulation represents what you expect from your circuit. 

 
Figure 7: Simulation logic train 



Assigning Pins 
Next we must assign pins to our device. Checking the DI01 Manual we note on 

p.2 that the eight LED drive signals are active high. Thus we will attach the output of our 
AND to the drive signal of LED 1. On p. 4 we note that activating a pushbutton connects 
its output to Vdd or logic high. Thus we will want to tie our inputs to the outputs of 
pushbuttons 1 and 2. Next we check the DI01/D2XL pin correspondence chart and note 
that LD1 is connected to FPGA pin 93 and that BTN1 and BTN2 are connected to pins 

 
Figure 8: The Test-Bench with input and output logic levels 



84 and 85. Select the .sch file in the “Sources” window with tab set to 
“Synthesis/Implementation” and double click on “Assign Package Pins” in the 
“Processes” window under “User Constraints”. Answer “Yes” that you do want to create 
an .ucf file. In the .ucf file enter p84, p85 and p93 in the “Loc” column for I/O 
components “In_1”, “In_2” and “Out_1” respectively and then save the file choosing 
“Synplify Verilog Default: []” as the bus delimiter. 

Implementing the Design 
Select the .sch file in the “Sources” window and double click “Configure Device 

[iMPACT]” to generate the appropriate files and download them to the FPGA. Follow the 
same steps you did in the initial tests of the boards. Ignore any warnings about clocks. 
You should once again see “Programming Succeeded” as the indication that no errors 
were found in your design and that the download was successfully accomplished. 

Testing the Design 
Manually verify that BTN1 and BTN2 are inputs to an AND circuit whose result 

is displayed in LD1. 

Design Project II 
Following the procedure above implement, simulate, download and test the circuit 

in Figure 9 which creates a NOR gate from 4 NAND’s. Finish the circuit by adding input 
and output  (I/O) buffers and giving appropriate labels to the I/O lines. You can once 
again use BTN1 and BTN2 for inputs and LD1 for the output. Verify that the truth table 
for a two-input NOR gate is satisfied. 

Design Project III 
One of the huge advantages of this form of design is that macros of arbitrary 

complexity can be constructed, stored and reused in future designs. Our collection of 

 
Figure 9: A two-input NOR circuit constructed from NAND's 



symbols contains many such macros. For our next design we will use one of them, 
CB4RE, a 4 Bit Cascadable Binary Counter with Clock Enable and Synchronous Clear, 
to construct a counter that will count from 0 to 5, reset and continue. We will then save it 
as a new macro to be used in our next experiment. The design in Figure 10 is an 
implementation of such a counter. 

Write down a truth table for this counter using values for the clock (clk), counter 
enable (cen), clear (clr) and sufficient number of clock cycles to show the full, repetitive 
operation of the counter. What is meant by “synchronous clear”? You may wish to 
consult the “Symbol Info” tab for the CB4RE counter. 

A new wrinkle in this design is the presence of a bus which is a collection of 
individual signals. It is automatically created when a wire, drawn with the wiring tool, is 
labeled as a vector e.g. btout(3:0). Individual elements of the bus are selected via bus taps 

with their names specified by using the netname tool. In our case these names are 
btout(0) to btout(3). Create the schematic entry in Figure 10; check for errors and save 
the file. The device that we wish to build will have 3 inputs, ce for Clock Enable, clr for 
Clear and clk for Clock. Outputs will consist of a bus 4 bits wide, btout(3:0). Start a new 
project with schematic entry at the highest level. Enter your design in the usual fashion 
naming the inputs ce, clk and clr. To generate a bus for output draw a line using the 
wiring tool and give it a name btout(3:0). The program will change the line into a thicker, 

 
Figure 10: A 0 to 5 counter 



bus, line in correspondence with the name. Attach the bus taps as indicated and name 
them btout(0) to btout(3) using the “add net name” tool. Be sure to save the design and 
check for errors. If none are found go back to “Project” and create a new source of type 
“Testbench Waveform” using a single clock. Provide changes in the logic states of “ce” 
and “clr” to fully test your design. Save this file and go to “Simulate Behavioral Model”. 
Verify that your logic is working properly by examining the outputs on the “Wave” plot 
below (Figure 11). Note that the “btout” bus is given numerically after each clock 
transition and can be expanded to look at the individual bit states as well. Does the output 
agree with your Truth Table? 

Next select your .sch file in “Sources” and double click “Create Schematic 
Symbol” in “Processes”. In your schematic entry page verify that the new symbol is 
available for use. 

Design Project IV 
Today’s lab is the introductory part of a two lab series that will result in the construction 
of a counter to count from 0 to 60 with the counts displayed on our 7-segment displays. If 
you have arrived this far with time remaining you may wish to continue with next week’s 
lab and construct the 0 to 60 counter that is at the heart of our stopwatch design. 

 
Figure 11: Testbench Waveforms for 0 to 5 Counter 


