Repeat (b) and (c) in the preceding problem, except this time employ either the Thevenin's or Norton's theorem, in order to find the unknowns. Hint: When following the Thevenin's theorem, for (c), it is useful to replace the circuit to the right of the 2Ω resistor by Thevenin's equivalent, ending up with a circuit with two voltage sources. When following the Norton's theorem, for (b), it is useful to replace the circuit to the left of the 10Ω resistor by Norton's equivalent, ending up with a circuit with two current sources.