Physics 472 - Spring 2008

Homework \#12, due Friday, April 24

(Point values are in parentheses.)

1. [6] Griffiths 3.39. We did several parts of this problem in class. Do them again anyway.
2. [7] Griffiths problem 4.56. When you get to part (e), do it for the special case $\hat{n}=\hat{j}$, i.e. a spin rotation about the y-axis. Apply the spin rotation operator you obtain to the state $|\uparrow\rangle$ and check that you get the answer we obtained in class long ago for a spinor pointing along an arbitrary direction in the $\mathrm{x}-\mathrm{z}$ plane. If you are feeling inspired, do the general case given in the problem.
3. [2] Suppose there are four variables, $A, A^{\prime}, B, B^{\prime}$ each of which can take one of two values: +1 or -1 (You can think of them as four coins being flipped). There are $2^{4}=16$ possible combinations of outcomes $\left(A, A^{\prime}, B, B^{\prime}\right)=(1,1,1,1),(1,1,1,-1),(1,1,-1,1)$, etc. Make a table showing all 16 possibilities. For each combination, calculate the quantity: $F=A B+A^{\prime} B^{\prime}+A B^{\prime}-A^{\prime} B . \quad$ What do you notice?
4. [5] The Einstein-Podolsky-Rosen "paradox" is based on the unusual properties of entangled states in quantum mechanics. One of the simplest examples is two particles in a spin singlet:

$$
\left|\Psi_{i}\right\rangle=|s=0\rangle=\sqrt{\frac{1}{2}}\left(|\uparrow\rangle^{(1)}|\downarrow\rangle^{(2)}-|\downarrow\rangle^{(1)}|\uparrow\rangle^{(2)}\right)
$$

Things get interesting if we send particle 1 to detector A , and particle 2 to detector B , where the two detectors are on opposite sides of the room. Each detector is a Stern-Gerlach apparatus whose axis can be set to any angle θ from the z-axis, in the $x-z$ plane.
a) Show that $\left|\Psi_{i}\right\rangle$ has the same form regardless of what basis we choose. In other words, rewrite $\left|\Psi_{i}\right\rangle$ in terms of the eigenstates of $\vec{S} \cdot \hat{n}$, where \hat{n} is a unit vector pointing at an arbitrary angle θ from the z -axis, in the $\mathrm{x}-\mathrm{z}$ plane. This result shows that, no matter what direction the SternGerlach detectors are pointed, the two detectors will always register opposite spin directions for the two particles if the detectors are oriented along the same axis.
b) The preceding result can be obtained in a more revealing way if we model the measurement process using projection operators. If detector A is oriented along the θ direction, and if we detect particle 1 as pointing "up" along that direction, then the state is projected onto:

$$
\left|\Psi_{f}\right\rangle=\hat{P}^{(1)}(\theta)\left|\Psi_{i}\right\rangle=\left(|\theta\rangle^{(1)}\left\langle\left.\theta\right|^{(1)} \otimes \hat{I}^{(2)}\right)\left|\Psi_{i}\right\rangle\right.
$$

Write $\left|\Psi_{i}\right\rangle$ in the initial state in the S_{z} basis, as I did at the beginning of this problem, and plug it into this formula to find $\left|\Psi_{f}\right\rangle$. Then re-write $\left|\Psi_{f}\right\rangle$ in the $\vec{S} \cdot \hat{n}$ basis. It should be clear from your result what detector B must measure, if it is oriented along the same direction. (Note that $\left|\Psi_{f}\right\rangle$ is not normalized, because we have projected out only a part of the original state.)

