Physics 472 - Spring 2009

Homework \#6, due Friday, February 27

(Point values are in parentheses.)

1. [5] Griffiths problem 6.1
2. [4] Griffiths problem 6.2. The easiest way to do part (b) is to express the \hat{x} operator in terms of \hat{a} and \hat{a}^{+}, as we have done in class.
3. [5] Griffiths problem 6.4.
4. [6] Griffiths problem 6.7. For part (b), do not use equation 6.27, or you won't know what you are doing. Instead, write the 2×2 matrix representation of H^{\prime} in the basis $|n\rangle$ and $|-n\rangle$, where $\langle x \mid n\rangle \equiv \Psi_{n}(x)=\frac{1}{\sqrt{L}} e^{2 \pi i n x / L}$. In other words, evaluate the four elements in the matrix:

$$
\left(\begin{array}{cc}
\langle n| H^{\prime}|n\rangle & \langle n| H^{\prime}|-n\rangle \\
\langle-n| H^{\prime}|n\rangle & \langle-n| H^{\prime}|-n\rangle
\end{array}\right)
$$

(Griffiths calls this matrix W.) After you evaluate these four numbers, find the eigenvalues and eigenvectors of the matrix. (I suggest you call the off-diagonal terms δ_{n} to save ink.) You will find the following formula useful, which we derived in PHY471:

$$
\int_{-\infty}^{\infty} e^{-\alpha x^{2}+\beta x} d x=\sqrt{\frac{\pi}{\alpha}} e^{\left(\beta^{2} / 4 \alpha\right)}
$$

Hints: $\delta_{n} \propto e^{-(2 m a / L)^{2}}$, and the answer to part (d) is Parity.

