

Introduction to Fullerene

PHY 891 May 8, 2009

Kritsada Kittimanapun

Outline

- Historical Introduction
- Fullerene structure
- Electronic structure
- Electrical conductivity
- Specific heat
- Conclusion

Historical introduction

- Early history
- Astronomical observation
- Architectural analogs
- Biological and geological examples

Fullerene structure

- Average bond length 1.44 A
 - On pentagon 1.46 A
 - On hexagon 1.40 A
- Diameter 7.10 A
 - Outer diameter 10.34 A
- Binding energy 7.4 eV/atom
 - Less than BE of carbon in graphite and ghaphene
- Cohesive energy 1.4 eV/atom

Fullerence structure

Euler's theorem (for polyhedra)

$$f + v = e + 2$$

where f, v, and e are respectively the numbers of faces, vertices, and edges of the polyhedra.

$$f = p + h$$

$$2e = 5p + 6h$$

$$3v = 5p + 6h$$

$$\Rightarrow \Rightarrow 6(f + v - e) = p = 12$$

Fullerene folding from graphene

Electronic structure

- Electronic levels for free C₆₀ molecules
 - Models for molecular orbital
 - Huckel model-physical discussion, tight-binding, *ab* initio
 - Every atom is equivalent
 - Successful in calculation of ionization potential and electron affinity

- Electronic structure of Fullerenes in the solid state
 - Overview of the electronic structure in the solid state
 - One-electron band calculation approach
 - Intramolecular interactions approach
 - Both provide determinations of HOMO-LUMO gap
 - Band calculations for solid C₆₀
 - LDA in density functional calculation
 - Band gap of $C_{60} \sim 1.5 \text{ eV}$
 - Charge contour

Electrical conductivity

- Stoichiometry dependence
 - Alkali metal-doped C₆₀
- Temperature dependence
 - Alkali metal-dope M_XC₆₀

Specific heat

- Temperature dependence
 - Low temperature
 - Intermediate temperature
 - Very high temperature

Conclusion

- Widely studied theoretically and experimentally
- Interesting behavior in physical properties
- Various application

