Introduction to Fullerene

PHY 891
May 8, 2009

Kritsada Kittimanapun
Outline

- Historical Introduction
- Fullerene structure
- Electronic structure
- Electrical conductivity
- Specific heat
- Conclusion
Historical introduction

- Early history
- Astronomical observation
- Architectural analogs
- Biological and geological examples
Fullerene structure

- Average bond length 1.44 Å
 - On pentagon 1.46 Å
 - On hexagon 1.40 Å
- Diameter 7.10 Å
 - Outer diameter 10.34 Å
- Binding energy 7.4 eV/atom
 - Less than BE of carbon in graphite and graphene
- Cohesive energy 1.4 eV/atom
Euler’s theorem (for polyhedra)

\[f + v = e + 2 \]

where \(f, v, \) and \(e \) are respectively the numbers of faces, vertices, and edges of the polyhedra.

\[f = p + h \]
\[2e = 5p + 6h \]
\[3v = 5p + 6h \]

\[6(f + v - e) = p = 12 \]
Fullerene folding from graphene
Electronic structure

- Electronic levels for free C$_{60}$ molecules
 - Models for molecular orbital
 - Huckel model—physical discussion, tight-binding, \textit{ab initio}
 - Every atom is equivalent
 - Successful in calculation of ionization potential and electron affinity
Electronic structure of Fullerenes in the solid state

- Overview of the electronic structure in the solid state
 - One-electron band calculation approach
 - Intramolecular interactions approach
 - Both provide determinations of HOMO–LUMO gap
- Band calculations for solid C_{60}
 - LDA in density functional calculation
 - Band gap of $C_{60} \sim 1.5$ eV
 - Charge contour
Electrical conductivity

- Stoichiometry dependence
 - Alkali metal-doped C_{60}
- Temperature dependence
 - Alkali metal-dope $M_x C_{60}$
Specific heat

- Temperature dependence
 - Low temperature
 - Intermediate temperature
 - Very high temperature
Widely studied theoretically and experimentally

Interesting behavior in physical properties

Various application