LECTURE #1

DRUDE MODEL

METAL = \[\text{positive ions fixed} \]

\[e + \] \[e - \]

COLLISIONS BETWEEN \(e \) AND FIXED IONS

CLASSICAL GAS OF FREE ELECTRONS

\[\frac{1}{m} = \frac{4}{3} \pi n_s^2 \]

\[v_s \approx \frac{1}{a_B} \sim 2 - 3 \]

\[\frac{v_s^2}{a_B} = \frac{\hbar^2}{m e^2} \sim 0.5 \text{ Å} \]

\[M = 2 \text{ mass} \]
ASSUMPTIONS

DRUDE MODEL:

1. NO E-E INTERACTION (INDEPENDENT E APPROX)
2. NO E-ION INTERACTION (FREE E APPROX)
3. RELAXATION TIME \(Z \)

TIME INTERVAL

\[\Delta t \longrightarrow \frac{\Delta t}{Z} \]

PROBABILITY TO HAVE E-ION COLLISION DURING \(\Delta t \)

IN THE CORRECT PICTURE

\(Z \) HAS TO DO WITH E-PHONON SCATTERING
\(\frac{1}{2} \) SCATTERING RATE

\(\sqrt{\frac{1}{2}} \)

MARKOV APPROXIMATION

THERMAL EQUILIBRIUM

DRUDE MODEL GOOD FOR

1. DC conductivity
2. Hall effect
3. AC conductivity

\(\mathbf{E} \rightarrow \)
\[
\vec{V}(t) = -\frac{e}{m} \vec{E} t \\
\vec{V}_{\text{AVERAGE}} = -\frac{e}{m} \vec{E} t \\
\vec{J} = \frac{e m \vec{E}}{m} = J_0 = \frac{e}{m} \frac{e m^2}{m} \vec{E} \\
J_0 = \frac{m e^2}{m} \Rightarrow \rho_0 = \frac{m e^2}{m} \\
\sigma_0 = \rho_0 \quad \text{(Drude conductivity)} \\
\sigma_0 = \rho_0 \quad \text{(Resistivity)}
\]
Z can be estimated from T.

$Z \sim 1 - 10$ femto - seconds

Femto s \hspace{1cm} 10^{-15} sec
Picosecond \hspace{1cm} 10^{-12} sec
Nanosecond \hspace{1cm} 10^{-9} sec

<table>
<thead>
<tr>
<th>GROUP</th>
<th>INTERESTS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin</td>
<td>Broad, optics</td>
<td>V</td>
</tr>
<tr>
<td>Richardson</td>
<td>Practical, spintronics</td>
<td>V</td>
</tr>
<tr>
<td>Pamp</td>
<td>Nanotubes, sensors</td>
<td>V</td>
</tr>
<tr>
<td>Kritsada</td>
<td>Theory, the/exp</td>
<td>NANO, NANO X</td>
</tr>
<tr>
<td>Dat</td>
<td>Practical, DFT</td>
<td>V</td>
</tr>
<tr>
<td>Name</td>
<td>Theory</td>
<td>Application</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Matt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kyle</td>
<td>LAZ</td>
<td></td>
</tr>
<tr>
<td>Nick</td>
<td>QYRAN</td>
<td></td>
</tr>
<tr>
<td>Marshall</td>
<td>LAZ</td>
<td></td>
</tr>
</tbody>
</table>