Formulas of Physics for ISP 209

Electricity and Magnetism

Electrostatics

Coulomb's Law. The magnitude of the electrostatic force between two charged particles is equal to the Coulomb constant K times the product of the charges $\mathrm{Q}_{1} \mathrm{Q}_{2}$ divided by the square of the distance r between the centers;

$$
F=\frac{K Q_{1} Q_{2}}{r^{2}} .
$$

- The electric field $\mathbf{E}(\mathbf{x})$ is a physical entity which is created by electric charges and which exerts a force on electric charges. Quantitatively, $\mathbf{E}(\mathbf{x})$ is equal to the force per unit charge \mathbf{F} / \mathbf{q} on a small test charge q placed at \mathbf{x},

$$
\mathbf{E}(\mathbf{x})=\mathbf{F} / q .
$$

- The electric potential $V(\mathbf{x})$ is the electrostatic potential energy per unit charge $U(\mathbf{x}) / q$ on a small test charge q placed at \mathbf{x},

$$
V(\mathbf{x})=U(\mathbf{x}) / q .
$$

- The voltage drop across a capacitor, i.e., the difference in electrostatic potential between the conductors, is Q / C where +Q and -Q are the charges on the conductors and $\mathrm{C}=$ capacitance, $V=Q / C$.
Or, if the potential drop is known, e.g., from the emf of a battery, then the charge on the capacitor plates is obtained from Q $=C V$.
- The energy stored in a capacitor is

$$
U=\frac{1}{2} Q V
$$

Electric current

Power consumption. The power P used by an electrical device is equal to the voltage drop V across the device times the current I flowing through it,

$$
P=I V .
$$

Power production. The power P provided by an electrical device is equal to the voltage drop V across the device times the current I flowing through it,

$$
P=I V .
$$

Ohm's Law. The voltage drop V across a resistor is equal to the current I flowing through it times the electrical resistance R,

$$
V=I R .
$$

Or, if the potential drop is known, e.g., from the emf of a battery, the current is $I=V / R$.

Joule's Law. The power dissipated as heat in a resistor is $\mathrm{I}^{2} \mathrm{R}$, where $\mathrm{I}=$ current and $\mathrm{R}=$ resistance,

$$
P=I^{2} R .
$$

Magnetic Force

- The magnetic force on a charged particle with charge q moving with velocity \mathbf{v} through a magnetic field \mathbf{B} is

$$
\mathbf{F}=q \mathbf{v} \times \mathbf{B}
$$

The direction is determined by the right-hand rule for the cross product.

- If the velocity vector \mathbf{v} is orthogonal to the magnetic field vector \mathbf{B}, then the magnetic force \mathbf{F} on the charge q is orthogonal to both \mathbf{v} and \mathbf{B}, in the direction given by the right-hand rule; and the magnitude of the force is

$$
F=q v B
$$

