Basic Superconductivity A Short Introduction

ennilled wenitiskl U2kl

Outline

- Empirical, Macroscopic properties
- The London Equation
- A Microscopic theory: BCS
- Consequences

Macroscopic Observations

- Many metals display superconducting properties
 - Al ,Nb, Cd, In, Sn, La...
- No measurable DC conductivity
- Perfect diamagnet
- Energy Gap near the Fermi energy Δ

Resistivity

- Critical Temperature,
 Tc
 - 1-10 mK ~~ 20K(10^-7 ~ 10^-3 eV)
- Normal metal vs.
 Superconductivity
- $p(T)=p0+BT^5$

Thermoelectric

- Lead
- No Peltier effect, no thermal current in Superconductor.
- Same temperature, different magnetic fields.

Critical field

- The application of magnetic fields change the energy in the system
- Type I
- All or none:
 Whole system is
 completely
 Superconducting or
 not.

Type I vs. Type II

Two superconductor types

 Type I: Complete shunting beneath Hc.

 Type II: Complete shunting beneath Hc1, decay to Hc2, and normal above.

Specific Heat

- Low Temp
- Metal Specific heat: aT+ BT^3

Superconductor
 Specific heat:
 exp(-Δ/KbT)

London Equation

- Quantitative way to describe the lack of a magnetic field in a superconductor
- Assume some fraction n(s) of the electrons are superconducting and carry the current
- Ignore band structure, and assume no decay.

$$m\frac{dv_s}{dt} = -eE; \frac{dj}{dt} = \frac{n_s e^2}{m}E$$

London Equation, con't

- With Faraday's Law: $\nabla XE = \frac{-1}{c} \frac{dB}{dt}$ Comes to: $\frac{d}{dt} (\nabla Xj + \frac{n_s e^r}{m} B) = \cdot$

Which describes a perfect conductor

 If the argument is restricted to zero, we come to the London Equation: And the Meissner Effect: $\nabla X j(r) = \frac{-n_s e^2}{m} B(r)$

$$\nabla^2 B = \left(\frac{4\pi n_s e^2}{m c^2}\right)_J^B \quad \lambda = \left(\frac{mc^2}{4\pi n_s e^2}\right)_s^{.5} = 41.9 \left(\frac{r_s}{a_0}\right)_s^{1.5} \left(\frac{n}{n_s}\right)_s^{.5} \mathring{A}$$

Microscopic Theory

- Bardeen, Cooper, and Schrieffer (1957)
- "Over-screened" Coulomb interaction

$$v_{k,k'}^{eff}(k,k') = \frac{4\pi e^2}{q' + k_0^2} \frac{\omega^2}{\omega^2 - \omega_q^2}$$

- Difference in electron energy ω vs. phonon energy ω_q $k^2 = 4\pi e^2 \frac{\partial n_0}{\partial u}$
- Attraction creates pairs.

Microscopic Theory, con't

- Attraction, in the presence of the Fermi sea, creates pairs, pair wave functions
- Full <u>State</u> wave function of N/2 pairs
- Anti-symmetrized singlet states
- Energy Range: $\Delta = \delta E = \delta (\frac{p^2}{2m}) = (\frac{p_f}{m}) \delta p \sim v_f \delta p$
- Spatial Range: $\xi_0 \sim \frac{\hbar}{\delta p} \sim \frac{\hbar v_f}{\Delta} \sim \frac{1}{k_f} \frac{\varepsilon_0}{\Delta} \sim 1 \cdot {}^3 \mathring{A}$ Large, many pairs included in the range, coherent system

Quantitative predictions

- Two major assumptions to get results:
 - Free electron approximation
 - Effective Interaction:

Critical Temp

- In zero magnetic field: $k_b T_c = 1.13 \hbar \omega e^{\overline{N_0 V_0}}$
 - V0 and omega from the Hamiltonian
 - N0 is the density of electronic levels, normal metal
- Exponential dependence shifts Tc
 - $\hbar \omega \sim k_{\scriptscriptstyle h} \Theta_{\scriptscriptstyle D}$ Very low

Energy Gap

Table 34.3	
MEASURED VALUES* O	F $2\Delta(0)/k_BT_a$

ELEMENT	$2\Delta(0)/k_BT$		
Al	3.4		
Cd	3.2		
Hg (a)	4.6		
In	3.6		
Nb	3.8		
Pb	4.3		
Sn	3.5		
Ta	3.6		
TI	3.6		
V	3.4		
Zn	3.2		

Prediction:

$$\Delta(0) = 2 \hbar \omega e^{\frac{-1}{N_0 V_0}}$$

A prettier relation:

$$\frac{\Delta(\cdot)}{k_b T_c} = 1.76$$

Tc behavior:

$$\frac{\Delta(T)}{\Delta(0)} = 1.74 \left(1 - \frac{T}{T_c}\right)^{.5}$$

Critical Field

Prediction:

$$\frac{H_c(T)}{H_c(0)} \approx 1 - \left(\frac{T}{T_c}\right)^2$$

 Small deviation throughout, some a little more than others

Specific Heat

Table 34.4	oceasta c		POSSOCHORES
MEASURED VALUES	OF	THE	RATIO"
$[(c_n - c_n)/c_n]_{T_n}$			

Disapposition of	$\left[c_{s}-c_{s}\right]$		
ELEMENT	Cn Tr		
Al	1.4		
Cd	1.4		
Ga	1.4		
Hg	2.4		
ln	1.7		
La (HCP)	1.5		
Nb	1.9		
Ph	2.7		
Sn	1.6		
Ta	1.6		
П	1.5		
V	1.5		
Zn	1.3		

^{*} The simple BCS prediction is $[(c_s - c_s)/c_s]_{T_c} = 1.43$.

Source: R. Mersevey and B. B. Schwartz, Superconabening, R. D. Parks, ed., Dekker, New York, 1969. Tc, B=0
Discontinuity:

$$\lim \frac{c_s - c_n}{c_n} = 1.57$$

Low T Electron Cv

$$\frac{c_s}{\gamma T_c} = 1.34 \left(\frac{\Delta(0)}{T}\right)^{1.2} e^{\frac{-\Delta(0)}{T}}$$

Linear coefficient,
 normal metal y

Microscopic Meissner Effect

 Free Electron model current in a metal:

$$\nabla X j(r) = -\int dr' K(r-r') B(r')$$

- If $\int dr K(r) = K \neq \bullet$
- Given slow varying B:

$$\nabla X j(r) = -K \cdot B(r)$$

This reduces to

$$\nabla X j(r) = \frac{-n_s e^2}{m} B(r)$$

- Showing $K_0 \neq 0$ is the hard part
- Perturbation theory, but complex

Ginzburg-Landau Theory

- More intuitive approach to the superconducting state via an order parameter, ψ
- One particle wave function of the CoM of a pair, slow varying.
- When currents flow:

$$j = \frac{-e}{2m} \left[\left(\psi^* \left(\frac{\hbar}{i} \nabla + \frac{2e}{c} A \right) \psi \right) + \left(\left(\frac{\hbar}{i} \nabla + \frac{2e}{c} A \right) \psi \right)^* \psi \right]$$

• Assuming that $\psi = |\psi|e^{i\phi}$

Ginzburg-Landau Theory, con't

 Assuming the pairs change via phase, not magnitude, which means little density variation:

$$j = -\left[\frac{2e}{mc}A + \frac{e\hbar}{m}\nabla\phi\right]|\psi|^2$$

• The London Equation, if $n_s = 2|\psi|^2$

Review

- Macroscopic observations, suggestion
 - Diamagnetism
 - Zero resistance
 - Energy Gap
 - tunneling, discreteness of energy levels
 - London Equation

- Microscopic Theories
 - BCS
 - Wave-functions, quantum behavior
 - Meissner effect
 - Ginzburg-Landau

Questions?

Thanks for listening!