Example 2.4
$$F = -\gamma v$$
 "retarding force"

$$m\frac{dv}{dt} = -\gamma v \implies \frac{dv}{v} = -\frac{\delta}{m} \mathcal{U}$$

$$lnv = -\frac{x}{m}t + e$$

$$\frac{\sigma}{\sigma} = e^{-\gamma t/m} \quad (t_0 = 0)$$

$$\frac{df}{dx} = f$$
 neans $f = e^x$ or e^x

$$= \left| V_0 \left(\frac{-1}{\gamma / \ln n} \right) e^{-\gamma t / \ln n} \right|_0^\infty = \left| \frac{-m V_0}{\gamma} \left\{ e^{-\alpha t - e^{-\gamma t / \ln n}} \right\} \right|_0^\infty$$

$$D = \frac{mv_0}{8}$$

Example 2.5
$$F = F_0 - \gamma \sigma$$

$$m \frac{d\sigma}{dt} = F_0 - \gamma \sigma$$

@ Method #1: Separation of variables (exercise)

@ Method #2: This is a linear inhomogorous question;

:. V = particular solution + general solution of the homogeness equation

 $v = \frac{F_0}{8} + ce^{-8t/m}$

$$0 = \frac{6}{8} + C \quad \text{weave} \quad C = -\frac{6}{8}$$

For small t, $U \approx \frac{Fo}{\delta} \left\{ 1 - \left[1 - \frac{\delta f_{m}}{m} \right] \right\} = \frac{Fo}{m} t$ $150 \cdot \text{for } \delta \frac{t}{m} \ll 1.$

Quiz B

Tuesday, June 2

Consider a particle that moves in one dimension. Suppose the velocity of the particle, as a function of time, is

$$v(t) = v_0 \tanh \alpha t$$

... where v_0 and α are constants.

- (a) Sketch a graph of v versus t. Indicate relevant positions on the v and t axes.
- (b) Let *F* be the force on the particle. Determine *F* as a function of *v*.
- (c) Sketch a graph of F versus v. Indicate relevant positions on the F and v axes.

HINTS: $\tanh x = \sinh x / \cosh x$ and $\cosh^2 x - \sinh^2 x = 1$.

Consider t20 only.

The particle acreliates and finally appositor + anstant valocity vo.

(b) F = m dv dt

F = mv (1-trul 2 xt) x

F= mvod - md vz

Ix tanh x = d sinh x coshx = coshx - sinhx sinhx $= 1 - \tanh^2 x = \operatorname{Sech}^2 x$

2 points

is 91 - C2 UZ.

Comment: Up is the terminal velocity, at which F = 0.

$$\frac{1-7}{-\hat{\imath}+\hat{\jmath}+\hat{k}}$$

$$-\hat{\imath}+\hat{\jmath}+\hat{k}$$

$$-\hat{\imath}+\hat{\jmath}+\hat{k}$$

$$-\hat{\imath}+\hat{\jmath}+\hat{k}$$

$$\hat{\imath}+\hat{\jmath}-\hat{k}$$

$$\text{lengte} = \vec{\imath}$$

$$\frac{1-10}{\sqrt{1+3\cos^2\omega t}}$$

$$\vec{A} = \hat{e} (\vec{A} \cdot \vec{e}) + \hat{e} \times (\vec{A}r\hat{e})$$

$$\frac{1-34}{2} \quad d(\vec{A} \times \vec{A}) = \vec{A} \times \vec{A} + \vec{A} \times \vec{A} = \vec{A} \times \vec{A}$$

QED