Cinservation of Erergy

- an importent method in dassical rechamies
- a unifying principle in all of science
(a) Define $K=\frac{1}{2} m v^{2}$ (kinatic evergy)

Then

$$
\begin{aligned}
\frac{d K}{d t}=\frac{m}{2} 2 v \frac{d v}{d t} & =v m a=F \frac{d \alpha}{d t} \\
\int \frac{d K}{d t} d t=\Delta K & =\int F \frac{d x}{d t} d t=\int F d x \\
\Delta K & =\int F d x=W .
\end{aligned}
$$

(b) If F is unservative then $\exists U(x)$ (potential enerfa) wher $F=-\frac{d U}{d x}$.
or, $U(x)=-\int^{x} F(x) d x$ or $\vec{F}=-\nabla V$ in 3 dimensions

So, $\Delta K=\int-\frac{d v}{d x} d x=-\Delta v$

$$
\begin{aligned}
& \Delta K+\Delta V=0 \\
& K+V=\text { constunt, the evergy. }
\end{aligned}
$$

The escape velocith for the Earth
\longrightarrow mininum velocity s.t. an object wiel escoge Earti's graint

Energy is conservel.
$E=\frac{1}{2} m v^{2}-\frac{G M m}{r}$ is constait.
Initial condutims: $E=\frac{1}{2} m v_{0}^{2}-\frac{G M m}{R}$
Limit $r \rightarrow \infty: E=\frac{1}{2} m v_{\infty}^{2}$
Escupe furm Earth's granits requires $v_{\infty} \geqslant 0$. I.e., $E \geqslant 0$.

$$
\begin{aligned}
& \frac{1}{2 m v_{0}^{2} \geqslant \frac{G M m}{R} \quad \text { or } v_{0} \geqslant \sqrt{\frac{2 G M}{R}}} \begin{aligned}
& v_{\text {escape }}=\sqrt{\frac{2-g R^{R}}{R}}=\sqrt{2 g R}=\sqrt{2 \cdot 10 \frac{\mathrm{k}}{S^{2}} \cdot 6.4 \times 10^{6} \mathrm{~m}} \\
&=11.2 \times 10^{3} \mathrm{~m} / \mathrm{s} \\
& g=\frac{G M}{R^{2}} \\
& G M=g R^{2}
\end{aligned}
\end{aligned}
$$

Chapter $9=$ Systems of Partides

- 1 particle: $\frac{d \vec{p}}{d t}=m \frac{d \vec{F}}{d t}=\vec{F}$
- 2 particles: $\frac{d \overrightarrow{p_{1}}}{d t}=\vec{F}_{1}$ and $\frac{d \vec{F}_{2}}{d t}=\vec{F}_{2}$

Define $\vec{P}=\vec{p}_{1}+\vec{r}_{2}$.
Then $\frac{d \vec{P}}{d t}=\vec{F}_{1}+\vec{F}_{2}=\vec{F}_{1, e_{x t}}+\vec{F}_{2, \text { ext }}$
By Newton's 3rd lan, $\vec{F}_{12}+\vec{F}_{21}=0$.
If the external fences are 0 , then the total momention is constant.

- N particles : $\vec{P}_{\text {total }}=\sum_{i=1}^{N} \vec{p}_{i}$

$$
\frac{d \vec{P}_{t \text { tall }}}{d t}=\sum_{i=1}^{N} \vec{F}_{i} \text {, external }=\vec{F}_{\text {external }}
$$

The internal fences cancel in pairs.
Momentum consecration (if \vec{F} enteral $=0$) is a consequence o Newt's 3 res law:

$$
\begin{array}{|r}
\hline \frac{d \vec{P}_{\text {total }}}{d t}=\vec{F}_{\text {ext }}
\end{array} \quad \leftarrow \text { sore proberns cark andizol }
$$

Homework Set D

2-22 (d)

Fields

$$
\vec{E}=E \hat{j} \quad \& \vec{B}=B \hat{k}
$$

Initial conditions

$$
x(0)=-\frac{A}{\omega} \text { a } y(0)=0
$$

$$
\dot{x}(0)=E / B \quad \& \quad \dot{y}(0)=A
$$

- Force $\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})=q v_{y} B \hat{z}+\left(q E-q v_{x} B\right) \hat{j}$
- Equations of Motion: $\quad m \ddot{x}=q B \dot{y}$

$$
m \ddot{y}=-q B \dot{x}+q E
$$

These are linear iulcomogerens equations.
A particular silution is $\dot{x}=E / B$ and $\dot{y}=0$.
A geneal solution of the homogerens quations $(E=0)$, satisfying the initial unditims $y(0)=0$ and $\dot{x}(0)=0$,
is $\quad x(t)=c_{1} \cos \omega t$ and $y(t)=c_{2} \sin \omega t$ where $\omega=\frac{\frac{q B}{m}}{}$.
The differential equations require $C_{2}=-C_{1}$.
The initial conditions $x(0)=-A / w$ and $\dot{y}(0)=A$
require $C_{1}=-A / w$ and $C_{2}=A / w$.
RESULT $x(t)=-\frac{A}{\omega} \cos \omega t+\frac{E}{B} t$

$$
y(t)=\frac{A}{\omega} \sin \omega t .
$$

$\frac{\text { RESULT }}{\xi} \quad x(t)=-\frac{A}{\omega} \cos \omega t+\frac{E}{B} t$

$$
y(t)=\frac{A}{\omega} \sin \omega t
$$

Craplis showing the treajectiry $\vec{x}(t)$ for
(i) $A<E / B$
(ii) $A=E / B$
(iii) $A>E / B$

These are the TROCHOID curves.

SHY 321 Quiz C

June 9, 2009

1. A particle of mass m moves along a straight line in a resistive medium; the resistive force is $-\gamma v$ where γ is a constant and v is the velocity of the particle. The initial velocity is v_{o}. Determine the distance D that the particle will travel while the resistance brings it to rest.

HINT: By Newton's second law, $m d v / d t=-\gamma v$. Solve the differential equation for v. Then $x=\int v d t$.
2. Now suppose the particle in problem 1 is pulled by a constant force F_{0} in the resistive medium. If the initial velocity is 0 , what is the velocity $v(t)$ as a function of time? Sketch a graph of v versus t.
(1) $m \frac{d r}{d t}=-\gamma v$

Suntion $v(t)=v_{0} e^{-\gamma t / m}$

Distance $=\int_{0}^{\infty} v d t=v_{0}\left[\frac{-m}{\gamma} e^{-\gamma t / m}\right]_{0}^{\infty}=\frac{m v_{0}}{\gamma}$ 3paints
(2) $m \frac{d v}{d t}=F_{0}-\gamma^{v}$

Solution $v=\frac{F_{0}}{\gamma}+C e^{-\gamma t / m}$ « $\begin{gathered}\text { partially solutim } \\ \text { gevacis } \\ \text { quation. }\end{gathered}$
Initial vale, $v(0)=0=\frac{F_{0}}{\gamma}+C \Rightarrow C=-\frac{F_{0}}{\gamma}$

$$
v(t)=\frac{F_{0}}{\gamma}\left\{1-e^{-\gamma t / m}\right\} \quad \|
$$

