1. Assume this is a perfectly elastic head-on collision. Calculate the final velocity of the larger mass.

Solution Key

2. Consider a rocket in interstellar space. For $\mathrm{t}<0$ the rocket is at rest. At $\mathrm{t}=$ 0 the rocket is ignited. During the rocket burn, the mass exhaust rate $=\mu=$ $-\mathrm{dm} / \mathrm{dt}$ is constant; and the relative exhaust speed is u. (Note that both μ and u are positive.) Determine the acceleration of the rocket a, as a function of time. Sketch a qualitatively correct graph of a versus \boldsymbol{t}. Assume $\mathrm{m}_{\text {final }}=0.1$ $\mathrm{m}_{\text {initial }}$.
(1) Momentum is ensured $m v_{0}=m v_{1}+3 m v_{2} \quad 1$ point

Energy is censured $\frac{1}{2} m v_{0}^{2}=\frac{1}{2} m v_{1}^{2}+\frac{1}{2} 3 m v_{2}^{2}$ 1ponit Solve for v_{2} :

$$
\begin{aligned}
v_{1}=v_{0}-3 v_{2} \rightarrow \quad v_{0}^{2} & =\left(v_{0}-3 v_{2}\right)^{2}+3 v_{2}^{2} \\
v_{0}^{2} & =v_{0}^{2}-6 v_{0} v_{2}+12 v_{2}^{2}
\end{aligned}
$$

$v_{2}=\frac{1}{2} v_{0}$ ipoont
The suction $v_{2}=0$ corresponds to no colirsion.
(2)

$$
\begin{aligned}
& \text { Exhaust } \\
& \stackrel{\text { Exhaust }}{=} \rightarrow v \quad \text { Rochet quatiun } d P_{\text {tod }}=0 \\
& d P_{\text {total }}=(m-\mu d t)(v+d v)+\mu d t(v-u)-m v \\
& =m d v-\mu u d t=0 \\
& \underline{a}=\frac{d v}{d t}=\frac{\mu u}{m_{0}-\mu t} \\
& 2 \text { points } \\
& t_{f}=\frac{0.9 m_{0}}{\mu} \\
& a_{f}=\frac{\mu u}{0.1 m_{0}} ; \quad a_{i}=\frac{\mu u}{m_{0}}
\end{aligned}
$$

HW Set F, Problem 1
Binary Star System
Cursied the motion o M_{2} areolar motion unite radius r_{2}.

$$
\frac{M_{2} V^{2}}{r_{2}}=\frac{G M_{1} M_{2}}{\left(r_{1} t r_{2}\right)^{2}}
$$

Note that $M_{1} r_{1}=M_{2} r_{2}$

$$
\begin{aligned}
& v^{2}=\frac{G M_{1} M_{2} r_{2}}{\left(r_{1}+r_{2}\right)^{2}} \\
& =\frac{G M_{1}^{2} R}{\left(M_{1}+M_{2}\right) R^{2}}=\frac{G M_{1}^{2}}{\left(M_{1}+M_{2}\right) R}
\end{aligned}
$$

Distances: $R=r_{1}+r_{2}$ are $M_{1} r_{1}=M_{2} r_{2}$
Tenge $r_{1}=\frac{M_{2} R}{M_{1}+M_{2}}$ and $r_{2}=\frac{M_{1} R}{M_{1}+M_{2}}$

The period f recantation of M_{2} (which is equal also to the period $\&$ resulting $\left.\& M_{1}\right)$ is

$$
\begin{aligned}
T & =\frac{2 \pi r_{2}}{v_{2}}=\frac{2 \pi M_{1} R}{M_{1}+M_{2}} \sqrt{\frac{\left(M_{1}+M_{2}\right) R}{G M_{1}^{2}}} \\
\therefore T & =\sqrt{\frac{4 \pi^{2} R^{3}}{G\left(M_{1}+M_{2}\right)}} \longleftarrow 2 \text { points }
\end{aligned}
$$

4 points

HW Set F, Problem 10
Example 9,12 : Saturn rocket
(a) Velocity u versus time t for the first stage q the rocket, 16 given by' E_{q}. (9.165)

$$
v(t)=-g t+u \ln \frac{m_{0}}{m_{0}-\mu t}
$$

Use EXCEL, or somme of or computer quapics program, to make con accurate graph of $v(t)$.

2 paints

PARAMETERS

$$
\begin{aligned}
& g=9.81 \mathrm{~m} / \mathrm{s}^{2} \\
& u=2600 \mathrm{~m} / \mathrm{s} \\
& m_{0}=2.8 \times 10^{6} \mathrm{hg} \\
& \mu=\text { exhaust } \begin{array}{l}
\text { Muss rate }
\end{array}=1.42 \times 10^{4} \mathrm{~kg} / \mathrm{s} \\
& t_{B}=\text { burnout }=148 \mathrm{~s} \\
& \text { time }
\end{aligned}
$$

(b) The acclatation 5

$$
a(t)=\frac{d v}{d t}=-g+\frac{u \mu}{m_{0}-\mu t}
$$

Un EXCEL, ar same other amputee moran to make cu accurate graph of $a(t)$. 2 points

4 points

Linearly damped oscillator (Chap. 3)

$$
\begin{array}{ll}
m \ddot{x}=-\gamma \dot{x}-h x & \text { Try } x=e^{\alpha t} \\
m \alpha^{2}=-\gamma \alpha-k & \dot{x}=\alpha e^{\alpha t} \\
m \alpha^{2}+\gamma \alpha+k=0 & \ddot{x}=\alpha^{2} e^{\alpha t} \\
\alpha=\frac{-\gamma \pm \sqrt{\gamma^{2}-4 m k}}{2 m} &
\end{array}
$$

Underdamped oscillations have $\gamma^{2}<4 m k$.
Then $\quad \alpha=-\frac{\gamma}{2 m} \pm i \sqrt{\frac{k}{m}-\left(\frac{\gamma}{2 m}\right)^{2}}$
Define $\omega_{0}=\sqrt{\frac{k}{m}}$ curd $\omega_{d}=\sqrt{\omega_{0}^{2}-(\gamma / 2 m)^{2}}$
$\operatorname{Ren} \alpha=-\frac{\gamma}{2 m} \pm i \omega_{d}$
The solution with initial values $\left\{\begin{array}{l}x(0)=A \\ \dot{x}(0)=0\end{array}\right.$ is

$$
\begin{array}{r}
x(t)=A e^{-\gamma t / 2 m}\left\{\cos \omega_{d} t+\frac{\gamma}{2 m \omega_{d}} \operatorname{sen} \omega_{d} t\right\} \\
\overline{\underline{\text { Euler }} e^{i \theta}=\cos \theta+i \sin \theta} \\
e^{ \pm i \omega_{d} t}=\cos \omega_{d} t \pm i \sin \omega_{d} t
\end{array}
$$

$$
x(t)=A e^{-\gamma t / 2 m}\left\{\cos \omega_{d} t+\frac{\gamma}{2 m \omega_{d}} \operatorname{sen} \omega_{d} t\right\}
$$

$x(t)$ versus t, for $\mathrm{Q}=10.0$; blue: the exponential factor

Note that $\dot{x}(t)=0$ when $\omega t=\pi, 2 \pi, 3 \pi, 4 \pi, 5 \pi, \ldots$ Then are the times q maximum displencereat from 0 . $X(t)$ is ut a maximum positive disllacenat for $\omega_{d} t=0,2 \pi, 4 \pi, 6 \pi, 8 \pi \cdots$
wo d $t_{n}=2 \pi n$ use $x=0,1,3,3, \ldots$

$$
x_{n}=A e^{-\gamma t_{n} / 2 n}\{1+0\}=A e^{-\frac{2 \pi \gamma}{2 m \omega_{d}} x}
$$

Energy and the underdamped osciltator
Dofine $E=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} k x^{2}$.
If $\gamma=0$ then E is cunstast.
If γ b" small" then E desreases slowly.

$$
\frac{d E}{d t}=m \dot{x} \ddot{x}+k x \dot{x}=(m \ddot{x}+k x) \dot{x}=-\gamma \dot{x}^{2}
$$

$$
x_{n}=A e^{-\frac{\pi r}{m_{0}} \dot{n}}
$$

$E_{n}=\frac{1}{2} k x_{n}^{2}=$ the maximanen of potenlial energy for positive displacerents.

$$
E_{n}=\frac{1}{2} k A^{2} e^{-\frac{2 \pi \gamma}{2 \omega_{d}} x}=\frac{1}{2} k A^{2} e^{-2 \pi n / Q}
$$

Define $Q=\frac{m \omega_{d}}{\gamma}$
"Quality fuctrr" is a dinensimicen moasune of the damfing

Comments

- $Q=\frac{m \omega \delta}{\gamma}$ war $\omega_{d}=\sqrt{\omega_{0}^{2}-\left(\frac{\gamma}{2 m}\right)^{2}}$

So $Q=\sqrt{\left(\frac{m \omega_{0}}{\gamma}\right)^{2}-\frac{1}{4}}$
For weak damping, $Q \approx \frac{m \omega_{0}}{\gamma}$ and $Q \gg 1$.

- $\frac{E_{n}}{E_{n+1}}=\frac{e^{-2 \pi n / Q}}{e^{-2 \pi(n+1) / Q}}=e^{2 \pi / Q} \quad$ (indyudent,

$$
Q=\frac{2 \pi}{\ln \left(E_{n} / E_{n+1}\right)}
$$

- $E_{n+1}=E_{n}-|\Delta E|_{n}$ $(\Delta)_{n}=$ every y lost by friction in ore cycle,

$$
\frac{\left(\left.\Delta E\right|_{n}\right.}{E_{n}}=1-\frac{E_{n+1}}{E_{n}}=1-e^{-2 \pi / Q}
$$ from x to $x+1$.

Fr $Q \gg 2 \pi \quad\left\{\right.$ ie., $\gamma<\frac{m \omega_{0}}{2 \pi} ;$ weak damping $\}$

$$
\frac{|\Delta E|_{n}}{E_{n}} \approx \frac{2 \pi}{Q} \quad \text { or } \quad \frac{E_{n}}{|\Delta E|_{n}} \cong \frac{Q}{2 \pi}
$$

- Large Q means weak damping ("quality factor")

