

- *Mathematica*, Newton, 1687
- Kepler's three laws.

Koplar at 20. Starpwarte Kramemünste

Kepler at 39, Sternwarte Kremsmunstel
http://members.nextra.at/stewar/

Copernicus	1473–1543
Columbus sails	1492
Tycho Brahe	1546–1601
Shakespeare	1564–1616
Johannes Kepler	1571–1630
Jamestown	1607
King James Bible	1611
Harvard College	1636
Isaac Newton	1642–1727

- simply that the planet's path is not a circle—it curves inward on both sides and outward again at opposite ends. Such a curve is called an oval. The orbit is not a circle, but an oval figure." —Ch. 44
- "What happened to me confirms the old proverb: a bitch in a hurry produces blind pups... But simply I could not think of any other means of imposing an oval path on the planets. When these ideas fell upon me, I had already celebrated my new triumph over Mars without being disturbed by the question whether the figures tally or not." —Ch. 45

Third Law 1618

• The size and periods of the planetary orbits are related by

 $P^{2} = a^{3}$

- where P is the period in years and
- a is the half of the major axis in astronomical units
- 1. A 10th object (planet?) was found beyond the orbit of Pluto. ____ has the shorter period.
 - A. <u>Pluto</u>
 - B. 10th object
 - C. Not enough information to answer

<u>3rd Law</u> http://web.cuug.ab.ca/~kmcclary/fastsolar.html

Questions concerning Kepler's Laws K1: A planet's path is an A planet, which has an ellipse with the sun at almost circular orbit, and one focus. a comet, which has a highly elliptical orbit, K2: A planet "sweeps" • have the same periods. out the same area in an Draw their orbits on a equal amount of time. single picture. K3: The planets' periods • 1. Grading: sun's position P and semi-major axes a are related by 2. Grading: lengths of major $P^2 = a^3$ axes.

- A. Same for bot
- B. Different

Questions concerning Kepler's Laws

- A planet's path is an ellipse with the sun at one focus.
- A planet "sweeps" out the same area in an equal amount of time.
- The planets' periods P and semi-major axes a are related by

P²=a³

Mar 20, 2004 06:49	186.4	
Sept 22, 2004 16:30	days	179.1days
Mar 20, 2005 12:33		łays

- Summer is long and winter is short: more precisely, the length of time from the spring equinox to the fall equinox is longer than that from the fall equinox to the spring equinox. Recall that the sun is north of the equator in summer, and its is on the equator on the equinoxes.
- Q: Draw the Earth's orbit so as to account for this.