Discovery of White Dwarfs—8 Oct

- Homework 4 is due on Mon.
- Hertzsprung-Russell diagrams
- Magnitude, apparent & absolute
- Adams' discovery

Sirius A & B
http://chandra.harvard.edu/photo/2000/0065/0065_optical.jpg
Ast 207 F2010

Hertzsprung-Russell diagram

- H-R Diagram is plot of temperature & luminosity
- Stefan-Boltzmann Law: $L = AT^4$
- 1. A star is gets hotter and its size does not change. In the H-R diagram, it moves
 - A. up & left
 - B. up & right
 - C. up-down
 - D. left-right
 - E. not at all

AST 207 F2010

Hertzsprung-Russell diagram

- H-R Diagram is plot of temperature & luminosity
- Stefan-Boltzmann Law: $L = AT^4$
- 1. Can two stars of the same spectral class have different luminosities?
 - A. No. No such cases exist on the H-R diagram.
 - B. Yes, temperatures differ
 - C. Yes, sizes differ
 - D. Yes, both size & temperatures differ.

Hertzsprung-Russell diagram

- H-R Diagram is plot of temperature & luminosity
- Stefan-Boltzmann Law: $L = AT^4$
- H-R diagram reveals stars cannot have any combination of size and temperature. There are three types of stars.
 - Dwarfs have differing temperatures and approximately the same size. Dwarfs are most common.
 - Giants are large.
 - White dwarfs are small.

Luminosity and flux

- Luminosity = amount of energy per second (Watt) produced by the star L=R²T⁴
- Flux = energy per second received by a detector on earth (Watt/m²) $F=L/D^2$
- 1. As viewed from Earth, which is the faintest star?
 - A. Sun
 - B. Vega
 - C. Sirius

Star	Apparent	Flux		Absolute	Lummosity		Distance
	mag	[W/m ²]	[f _{Vega}]	mag	[W]	\mathcal{L}_{sun}	[pc]
Sun	-26.7	1400	5.2×10 ¹⁰	4.8	3.9×10^{26}	1	5×10 ⁻⁶
Vega	0.0	2.7×10 ⁻⁸	1	0.5	2.1×10^{28}	54	8
Sirius	-1.45	1.1×10 ⁻⁷	3.9 Ast 207	F2040	9.0×10 ²⁷	23	2.7

Apparent & Absolute Magnitude

- Apparent mag is a logarithmetic expression of flux
- If the apparent mag <u>changes</u> by -2.5, the flux is brighter by a <u>factor</u> of 10.
 - If the apparent mag <u>changes</u> by +2.5, the flux is fainter by a <u>factor</u> of 10.
- 1. The apparent magnitude of a star is +2.5. Its flux is
 - A. $2.7 \times 10^{-6} \text{W/m}^2$.
 - B. $2.7 \times 10^{-7} W/m^2$.
 - C. $2.7 \times 10^{-8} \text{W/m}^2$.
 - D. $2.7 \times 10^{-9} W/m^2$.
 - E. $2.7 \times 10^{-10} \text{W/m}^2$.
- 2. The apparent magnitude of a star is +5. Its flux is

Star	Apparent	Flux		Absolute	Luminosity		Distance
	mag	[W/m ²]	[f _{Vega}]	mag	[W]	[L _{sun}]	[pc]
Sun	-26.7	1400	5.2×10 ¹⁰	4.8	3.9×10^{26}	1	5×10 ⁻⁶
Vega	0.0	2.7×10 ⁻⁸	1	0.5	2.1×10^{28}	54	8
Sirius	-1.45	1.1×10 ⁻⁷	3.9 Ast 20	7 f12.64 0	9.0×10 ²⁷	23	2.7

Apparent & Absolute Magnitude

- Apparent mag is a logarithmetic expression of flux
- If the apparent mag <u>changes</u> by -2.5, the flux is brighter by a <u>factor</u> of 10.
- Fluxes and magnitudes of two stars A and B

$$\frac{f_{\rm B}}{f_{\rm A}} = 10^{-(m_{\rm B} - m_{\rm A})/2.5}$$

$$m_{\rm B} - m_{\rm A} = -2.5 \log_{10} \frac{f_{\rm B}}{f_{\rm A}}$$

- Try it
 - If m_B is –2.5 more than m_A , m_B – m_A = –2.5, and $f_B/f_A = 10^{-(-2.5)/2.5} = 10^1 = 10.$
 - If B is brighter by a factor of 10, $f_B/f_A=10$, and $m_B-m_A=-2.5 \log(10)_{\overline{A}s} \frac{1}{2} \frac$

M15

- Globular cluster M15
 - All the stars were born at the same time.
 - Bright orange stars are giants.
 - Blue stars are dwarfs.

NASA: HST Ast 207

AST 207 F2010

- 1. Sirius B may be faint for two reasons. It may be small or it may be
 - A. farther away
 - B. closer
 - C. cooler
 - D. hotter

- 1. Sirius B may be faint for two reasons. It may be small or it may be
 - A. farther away
 - B. closer
 - C. cooler
 - D. hotter
- Adams found that Sirius A and B have about the same color. Therefore Sirius B is smaller.

Ast

Sirius A and Sirius B

- Adams found that Sirius A and B have about the same color. Therefore Sirius B is smaller.
 - $L = R^2T^4$
- How much smaller is Sirius B?
- Apparent mag of Sirius A is -1.5
- Apparent mag of Sirius B is 8.7

- 1. The mag of Sirius B is approximately __ steps of 2.5 fainter than that of Sirius A.
 - A. 4
 - B. 5
 - C. 6
 - D. 10
- 2. The flux of Sirius B is approximately <u>fainter</u>.
 - A. a factor 10
 - B. a factor of 100
 - C. a factor of 1000
 - D. a factor of 10,000.

Ast 207 F2010

http://chandra.harvard.edu/photo/2000/0065/0065_optical.jp

Discovery of white dwarfs

- Adams found that Sirius A and B have about the same color. Therefore Sirius B is smaller.
 - $L = R^2T^4$
- 1. The mag of Sirius B is 4 steps of 2.5 fainter than that of Sirius B.
- 2. The flux of Sirius B is approximately a factor of 10,000 fainter.
- The radius of Sirius B is 1/100 that of Sirius A.
 - Sirius B is about the size of the Earth.
- Tiny stars are called white dwarfs.
- Main-sequence stars and white dwarfs use different laws of physics.

Ast 207 F2010

http://chandra.harvard.edu/photo/2000/0065/0065_optical.jpg