

Lifetime of Stars

- Lifetime = Amount of fuel/Rate of consumption
 - Lifetime of a tank of gas for a car
 - For a star

 - Amount of fuel = mass
 Rate of consumption = luminosity
- Lifetime = mass / luminosity
- Stars have a finite life. The sun will not live forever!

Spectral Class	Abs Mag	Luminosity [Lsun]	Mass [Msun]	Lifetime [Tsun]
03	-6	25000	40	1/600
G2 (sun)	5	1	1	1
M0	10	1/100	0.3	30

Ast 207 F2010

	LIIC		013	lars
Lifetime = n Stars have a The sun will - Life of su O3 stars	nass / luminos finite life. not live fore un is 10Byr	sity ver!		
 Lifetime O stars h M0 stars have 	is 1/600 of sun ave a lot more : ve a long life.	's mass than the s	un. Why is	their life so s
 Lifetime O stars h M0 stars hav Spectral Class 	is 1/600 of sun ave a lot more ve a long life. Abs Mag	's mass than the s Luminosity [Lsun]	un. Why is Mass [Msun]	their life so s Lifetime [Tsun]
 Lifetime O stars h M0 stars hav Spectral Class O3 	is 1/600 of sun ave a lot more re a long life. Abs Mag -6	s mass than the s Luminosity [Lsun] 25000	un. Why is Mass [Msun] 40	their life so s Lifetime [Tsun] 1/600
 Lifetime O stars h M0 stars hav Spectral Class O3 G2 (sun) 	is 1/600 of sun ave a lot more /e a long life. Abs Mag -6 5	s mass than the s Luminosity [Lsun] 25000 1	un. Why is Mass [Msun] 40 1	Lifetime [Tsun] 1/600 1

Cluster of Stars

- In a cluster of stars
 - All stars were born at the same time.
 - Some are massive and live a short life.
 - On a human scale: 20T if the sun scales to 100lb.
 - On a human scale: 5 wk if the sun scales to 70yr.
 - Some have little mass.

Spectral Class	Abs Mag	Luminosity [Lsun]	Mass [Msun]	Mass	Lifetime [Tsun]	Lifetime
O3	-6	25000	40	20T	1/600	5wk
G2 (sun)	5	1	1	100lb	1	70yr
M0	10	1/100	0.3	30lb	30	2000yr

Ast 207 F2010

19th Century "Energy Crisis"

- Luminosity of sun L=4×10²⁶Watt
- Mass m=2×10³⁰kg
- How long will the sun last if the energy is produced by burning coal? C+O₂→CO₂
 - Life time = m×(E/m)/L
 - E/m=9MJ/kg
 - 1500 years
- Earth is much older than that.

E=mc²

- Crisis: No solution with physics of 19th century.
- Einstein's new theory (1906)
 - Energy can change into mass, and mass can change into energy.
 - $E = m c^{2}$.
 - Energy = mass \times (speed of light)².
- Changing a little mass produces a lot of energy. Compare kinetic energy $\frac{1}{2}$ m v² with m c².
 - Speed of light c = 300,000 km/s
 - Air in blast furnace moves at 0.2 km/s

- Chemical reaction $C+O_2 \rightarrow CO_2$ - $E=m c^2/100,000,000,000$. One part in 100 billion of mass disappears and changes into energy.
- Sun contracts by 10%
 - $E=m c^2/1,000,000$. One part in a million of mass disappears and changes into energy.
- H fuses to produce He
 - E=m c²/140. A part in 140 of the mass disappears and changes into energy.

Nuclear fusion In a nuclear reaction, converting a significant fraction of the mass to energy is possible. Hans Bethe figured out the nuclear physics of how this happens. Hans Bethe $4 \, {}^{1}\text{H} \rightarrow {}^{4}\text{He} + \text{neutrinos} + 2e^{+} + \text{energy}$ 1906-2005 4 hydrogen nuclei fuse One helium nucleus is produced Which is heavier? A box of hydrogen and a box of 1. helium, neutrinos, and positrons made from the hydrogen? A. Box containing H B. Box containing the products: He, neutrinos, and positrons C. The two boxes have the same mass.

