Life of the Sun—15 Oct

- Energy production in the sun
- Sun will use up the hydrogen in the center in 5Byr
- Center of sun must shrink to get hotter to balance gravity
 - Sun will become a red giant. Surface expands.
- Sun will become a planetary nebula
- Sun will become a white dwarf

Announcements

- Test 2 is Wed, Oct 20.
 - Covers material though HR diagram of star clusters (11 Oct).
 Does not cover energy production.
 - Covers homework 5.
 - Mostly on material since first test.
 - One cheat sheet.
 - See practice test on angel.
 - Missouri "Show me" Club
 - Tues, Oct 19, 7:40-8:40pm
 - BPS 1420
- Homework 5 is due at start of class on Mon, Oct 18. No late papers.
- Open house at the MSU Observatory
 - Today and Saturday (October 15 and 16), 9-11pm, weather permitting
 - Bring your friends, parents, siblings, children

The sun's choice

- Sun does a balancing act. $\frac{M}{R} = T$
- Sun must produce energy to replenish the energy radiated away.
- Without burning fuel to keep temperature up, pressure would fall and gravity would win.
 - Core shrinks, gets hotter T=200MK

Triple-alou	
Reaction	pro Min. Femp.
4 ¹ H → ⁴ He	10 MK
3 ⁴ He → ¹² C	200 MK
¹² C + ⁴ He → ¹⁶ O, Ne, Na, Mg	800 MK
Ne ➔ O, Mg	1500MK
O ➔ Mg, S	2000MK
Si → Fe peak	3000MK

The sun's choice

- 1. Why does fusion of helium require a higher temperature?
 - A. Helium is heavier
 - B. Helium has 2 protons
 - C. Helium has two neutrons
- With more charge, it takes higher speeds to bring two He nuclei close enough to fuse.
 - Carbon has 6 protons.

Tripleralnu	
Reaction	pro Min. Temp.
4 ¹ H → ⁴ He	10 MK
3 ⁴ He → ¹² C	200 MK
¹² C + ⁴ He → ¹⁶ O, Ne, Na,	800 MK
Mg	
Ne ➔ O, Mg	1500MK
O ➔ Mg, S	2000MK
Si → Fe peak	3000MK

