

What is a supernova? Why sun becomes a white dwarf, not a supernova

• In future double-shell burning sun, hot enough to burn

 $3^{4}\text{He}\rightarrow^{12}\text{C}$

- When He exhausted, gravity wins, and core contracts.
- Electrons are so tight that they become degenerate.
- New source of pressure to resist gravity.
- Temperature not hot enough to burn carbon.

Reaction	Min. Temp.		
4 ¹ H → ⁴ He	10 ⁷ ° K		
3 ⁴ He → ¹² C	2x10 ⁸		
$^{12}\text{C} + {}^{4}\text{He} \rightarrow {}^{16}\text{O}$, Ne, Na, Mg	8x10 ⁸		
Ne ➔ O, Mg	1.5x10 ⁹		
O ➔ Mg, S	2x10 ⁹		
Si → Fe peak	3x10 ⁹		

What is a supernova? Why sun becomes a white dwarf, not a supernova

- Sun has one more trick after He is exhausted in core.
 - Burn He in a shell

• Sun is not massive enough to shrink further and get hot enough to burn carbon. T = M/R

- Core is supported by pressure of degenerate electrons.
- Temperature does not rise to burn anything else.
- End of the road: planetary nebula & white dwarf core

What is a supernova? Why massive star becomes a supernova

- Hot enough to burn ${}^{4}\text{He} + {}^{12}\text{C} \rightarrow {}^{16}\text{O}$, etc
- When C exhausted, gravity wins, and core contracts.
- Temperature rises.
- Temperature hot enough to burn neon.
 - 20 Ne + 4 He \rightarrow 24 Mg
- Disaster with iron
 - Burning releases energy
 - Fusing iron takes up energy
- Gravity finally wins.

Reaction	Min. Temp.		
4 ¹ H → ⁴ He	10 ⁷ ° K		
3 ⁴ He → ¹² C	2x10 ⁸		
$^{12}\text{C} + {}^{4}\text{He} \rightarrow {}^{16}\text{O}$, Ne, Na, Mg	8x10 ⁸		
Ne ➔ O, Mg	1.5x10 ⁹		
O ➔ Mg, S	2x10 ⁹		
Si →Fe peak (lasts 1 day)	3x10 ⁹		
	hydrogen fusion helium fusion carbon fusion oxygen fusion neon fusion		
inert in	magnesium fusion silicon fusion		

- Fusion of stable nuclei less massive than iron releases energy
- Fusion of stable nuclei more massive than iron requires input of energy and therefore cannot occur.

What is a supernova? Why massive star becomes a supernova

Reaction

4 ¹H **→** ⁴He

- Disaster with iron
 - Burning releases energy
 - Fusing iron takes up energy
- Gravity finally wins.
- Star collapses in few seconds
- Rebounds as supernova
 - Reason for rebounding is topic of current research

у	3 ⁴ He → ¹² C	2	2x10 ⁸	
	$^{12}\text{C} + {}^{4}\text{He} \rightarrow {}^{16}\text{O}$, Ne, Na, Mg		8x10 ⁸	
	Ne → O, Mg	1.	1.5x10 ⁹	
	O ➔ Mg, S		2x10 ⁹	
	Si →Fe peak	ourning by	3x10 ⁹	
		hydroge	n fusion	
		heli	um fusion	
			carbon fusion	
			oxygen fusior	
		-	neon fusion	
		ma	gnesium fusior	
	s		sion	

inert iron core

Min. Temp.

10⁷ ° K

• Expel outer layers.

Neutron capture

- In a supernova, there are free neutrons made by destroying nuclei.
- Nucleus captures neutrons and turns into a heavier nucleus. Inside a nucleus,

 $\begin{array}{c} nucleus + n \rightarrow heavier \\ nucleus \end{array}$

• Nucleus may decay into a more stable one.

 $n \rightarrow p + e^- + \upsilon$

- Nucleus may capture more neutrons.
- Eventually unstable nuclei decay into stable ones. Some heavy as uranium.

- If ¹⁹⁷Au captures a neutron, it becomes ____. (Au has 79p. Hg has 80p. Pt has 78p.)
 - A. ¹⁹⁷Hg
 - B. ¹⁹⁸Au
 - C. ¹⁹⁸Hg
 - D. ¹⁹⁸Pt
- If a neutron in ¹⁹⁸Au decays, it becomes ____. (Au has 79p. Hg has 80p. Pt has 78p.)
 - A. ¹⁹⁸Hg
 - B. ¹⁹⁸Au
 - C. ¹⁹⁸Pt
- The net effect is to turn gold ¹⁹⁷Au into mercury ¹⁹⁸Hg

Neutron capture

- In a supernova, there are free neutrons made by destroying nuclei.
- Nucleus captures neutrons and turns into a heavier nucleus. Inside a nucleus,

 $\begin{array}{c} nucleus + n \rightarrow heavier \\ nucleus \end{array}$

• Nucleus may decay into a more stable one.

 $n \rightarrow p + e^- + \upsilon$

- Nucleus may capture more neutrons.
- Eventually unstable nuclei decay into stable ones. Some heavy as uranium.

- Calculation of nuclear reactions in a supernova.
- Start with iron and add neutrons
- Look at gold
 - 79 protons, 197-79=118 neutrons

