Helium Production in Big Bang—10 Nov

- Homework 8 is on angel. Due noon on Mon, 15 Nov.
- Homework 9 will be due Fri, 19 Nov at start of class. No late papers. Covered on Test 3 (22 Nov).
 - Long assignment. Start early.
- A fossil is a remnant or trace of the past. What is a fossil from the Big Bang?
 - There are 7 protons for every neutron
 - The surface of the sun is 25% He and 75% H.
- What does that fossil tell about the BB?

Fossil from Big Bang

Fossil from Burgess Shale

Objectives

- What are the fossils (something that can be examined) from the universe at 3 min?
- What did astronomers learn by examining the fossils?

"Collecting the Fossil"

- ⁴He, ⁷Li, ²H, & ³He are made in BB.
 - Lots of ⁴He
 - Trace amounts of ⁷Li, ²H, & ³He.
 Diagnostics.
- Measure abundances with spectra of "primordial objects"
 - First stars in our galaxy, made before much of the material had been processed through stars.
 - Dwarf galaxies, where material is processed through stars very slowly.
- Deuterium ²H has same spectra as hydrogen ¹H but slightly shifted.
 - Abundance of ²H: Strength of ²H spectral line compared with ¹H line.

photons/(n+p) **Results** 1011 10¹⁰ 10⁰ Horizontal bars are 10⁻¹ measurements. to Hydrogen Lines are models for differing 10⁻² amounts of photons/(n+p) The temperature of the radiation `10⁻³ from the BB tells us the number of photons. Relative to 10⁻⁵ How many ¹H nuclei are there for every ²H nucleus according to the measurements? He-4 10⁻⁶ The model for photons/(n+p) =10¹¹ is inconsistent with the He-3 10⁻⁷ measurements. The measured Li-7 ⁴He is too _ 10⁻⁸ A. High Number Low 10⁻⁹ Measurements are consistent with models for photons/(n+p) = 10⁻¹⁰ 4×10^{10} . Ned Wright's Cosmology Notes

Examining the fossil, conclusions

- Calculations, which contain U expanding and nuclear physics, yield abundances of ⁴He, ⁷Li, ²H, & ³He. The only free parameter is number density of n and p.
- Measured and calculated abundances are consistent.
 - 7Li is slightly off
- Understanding of BB (and nuclear physics) is confirmed.
- Surprise: Most of neutrons and protons are <u>not</u> in stars. Lots in gas between galaxies. Location of about 50% is not known.

Fossil from Burgess Shale

Objectives

- Why did the abundance of neutrons change before the "fossil was laid down" and not afterwards?
- #n/#p does not change when neutrons are in a stable nucleus. (Done on Mon)
- How do free neutrons and protons change identity? How does the temperature of the radiation affect this process? (Now)

Changing free neutrons & protons

- Neutrons were free before nuclei formed at 3min.
- Proton changes into neutron

$$p + e^{-} + energy \rightarrow n + v$$

- Need 2MeV of energy
- Neutron changes into proton
 - Positron must hit neutron

$$n + e^+ \rightarrow p + energy + v$$

 Happens spontaneously in 1000s (17min)

$$n \rightarrow p + e^{-} + energy + v$$

- 1electron-Volt is the typical energy of a chemical reaction.
- 1.5eV is the energy a battery gives to one electron.
- 1eV = 1.6×10^{-19} J
- 1MeV is the typical energy of a nuclear reaction.

 $\frac{2 \text{ MeV}}{\text{p}}$

Changing <u>free</u> neutrons & protons

- Case of equilibrium: There are many collisions between neutrons and positrons and between protons and neutrons.
 - This is the case when the density of electrons and positrons was high.
 - When density of electrons and positrons was lower, collisions became too infrequent to maintain equilibrium. Neutrons decayed into protons.
- In equilibrium, neutrons change into protons and protons change into neutrons. Change occurs by rules of probability.
- A collision of a neutron or a proton occurs. What is the result of the collision?

(Probability of neutron)/(Probability of proton) = $e^{-E/(kT)}$

- E is energy it takes to change a p into a n (2MeV)
- T is the temperature. kT is average energy available.

2 MeV

$\frac{E}{/(kT)}$	(Prob. n) /(prob. p)
0.01	0.99
0.1	0.9
1	0.37
3	0.05
10	0.00005

AST207, F2010

Changing free neutrons & protons

(Probability of neutron)/(Probability of proton) = $e^{-E/(kT)}$

- E is energy it takes to change a p into a n (2MeV)
- T is the temperature. kT is average energy available.
- When the average available energy is much higher than energy needed to make a neutron, the probability of getting a neutron is ____ probability of getting a proton.
 - A. About the same as
 - B. Much less than
 - C. Much more than
- 2. In this case, the number of n is ____ the number of protons.
- When the average available energy is much lower than energy needed to make a neutron, the probability of getting a neutron is ____ probability of getting a proton. (Same foils.)
- 4. In this case, the number of n is ____ the number of protons.
- 5. Case in problem 1 is when universe was ____ than case in #3.
 - A. Younger
 - B. Older

$\frac{E}{kT}$	(Prob. n) /(prob. p)
0.01	0.99
0.1	0.9
1	0.37
3	0.05
10	0.00005

2 MeV

$$p + e^{-} + energy \rightarrow n + v$$

 $n + e^{+} \rightarrow p + energy + v$

- When the temperature of the radiation was hot and the average energy of was much bigger than 2 MeV, neutrons could change into protons as easily as protons into neutrons.
- As universe cooled, n → p occurs more often than p
 → n, and p becomes more abundant than n.