Weighing the universe—6 Dec

- Homework 11 will be due on the last day of classes (Fri, 10th).
 Answers will be posted after class. No late papers.
- Final exam
 - Covers the entire term with more emphasis on 20th century cosmology
 - Wed, 15th, 3:00-5:00 in 1415
 - Missouri Club: BPS-1420 on Mon, 12/13, 11:30am 12:30pm
- Use fluctuations in the temperature of the cosmic background radiation to weigh the universe (determine the mass density).
- Weighing the universe with supernovae.
- · What we will find: Expansion of universe speeds up!
 - "Dark energy" is dominant. Dark energy repulses whereas matter and radiation attract.

12/6/2010 Ast 207 F2010

Angle subtended by hot blob is related to mass density of universe

- The size of the largest fluctuation is about 100,000 light years.
- The angle of the largest fluctuation is 1°.
- The motion is expansion of the U by a factor of about 1000.
 - Temperature_{recombination}=3000K; T_{now}=2.7K. Factor=3000/2.7=1100.
- Can measure the time for the motion.
- The universe has a higher mass density if the angle of the largest fluctuations is _____.
- Reasoning:
 - The motion is expansion of the U by a factor of 1000.
 - With a higher mass density, motion takes a ____ time.
 - With a higher mass density, distance to hot blob is ____
 - With a higher mass density, angle subtended by the hot blob is bigger.
- Blanks are
 - A. Shorter for both
 - B. Shorter and longer
 - C. Longer and shorter
 - D. Longer for both

WMAP satellite

Hot blob At 400,000yr

12/6/2010

Supernova

- A Type II supernova is a massive star that explodes when it runs out of fuel and pressure is insufficient to counter gravity.
- A Type I supernova is a white dwarf that explodes.
 - A WD and giant orbit each other.
 - Mass moves from the giant to the WD.
 - WD explodes when it gets so much mass from the giant that degeneracy pressure can no longer oppose gravity.
- Type I supernovae are "standard candles." They have the same luminosity.
- How to find supernovae
 - Look at many galaxies.
 - Look again later. Find objects that were not there earlier.

Distant supernovae Riess et al, 2004, ApJ 607, 665.

12/6/2010 Ast 207 F2010

- When the U was half of its present size, a supernova in a galaxy emitted some light, which we see. What do we measure to determine that the U was half its present size when the light was emitted?
 - A. Measure flux of supernova.
 - B. Measure flux of galaxy.
 - C. Measure wavelength of a spectral line emitted by the galaxy.
- 2. Example: The wavelength of the OII line is 372.7nm in the laboratory and 745.4nm in a galaxy with a supernova. The expansion parameter at the time the star exploded was
 - A. 2
 - B. 1
 - C. 0.5

12/6/2010 Ast 207 F2010

- In a universe with a higher mass density, the supernova at redshift 1 (expansion parameter 0.5) will be ___. (Supernovae emit the same luminosity independent of the mass density of the U.)
 - A. brighter
 - B. fainter
- Ideas:
 - Why would the brightness of a SN depend on mass density of the universe?
 - Flux = Luminosity / Distance².
 - What affects distance to SN?
- If time for U to expand is shorter, distance is shorter. $_{\mbox{\tiny Ast 207 F2010}}$

Distance = time × speed of light

Distant supernovae Riess et al, 2004, ApJ 607, 665.

Ways to weigh the U

- Measure angular size of hot blobs in the radiation from the Big Bang.
 - Bigger angle (closer) means higher mass density.
- Measure flux of supernovae
 - Higher flux (closer) means higher mass density.

12/6/2010

Effect of gravity on expansion of the universe

- We assumed the force of gravity had a negligible effect on the expansion of the universe, so that the speed of galaxies remained the same. Now we include the force of gravity.
- How to think about the effect of gravity on the expansion of the universe.
 - We are at the center of a big sphere. Many galaxies (and other stuff) fills the sphere. Even more galaxies are outside the sphere.
 - The galaxy of interest is on the edge of the sphere.
 - Sphere expands and galaxy moves because universe expands.

12/6/2010

Ast 207 F2010

Do the galaxies outside the sphere affect the motion of the galaxy?

- 1. The little guy is in a well that runs through the earth. If a giant hand scraped the top 10miles off earth, the force on the guy ____. The galaxies outside the sphere ____ the motion of the galaxy.
 - A. Decreases. Do affect
 - B. stays the same. Do not affect
 - C. increases. Do affect

12/6/2010

12/6/2010 AST207 F2010

Effect of gravity on expansion of the universe

- Analyze the effect of gravity on the motion of the one galaxy to find the effect of gravity on the expansion of the universe.
- Newton says: The galaxy feels the pull only of the mass inside the sphere.
- If there is much mass, the galaxy will slow down, and the expansion of the U will slow down too.
- 1. Consider H's constant H=v/D. If there is little mass in the sphere, v was constant and D was smaller in the past. If there is more mass, would Hubble's constant in the past be ____?

B. same as with little mass

C. not as big

acceleration. Ignore change in D due to acceleration, since that is the sum of the changes in v, which is smaller than the change in v itself.

Hint: Consider change in v due to

12/6/2010