AST207 F2010 12/10/2010

What is Dark Energy/ Cosmological Constant—10 Dec

- Homework has not been graded. Look at answers on Angel.
- Final exam
 - Covers the entire term with more emphasis on 20th century cosmology
 - Wed, 15th, 3:00-5:00 in 1415
 - Missouri Club: BPS-1420 on Mon, 12/13, 11:30am 12:30pm
 - You cannot borrow a calculator from another student during the exam.
- Please fill out http://rateyourclass.msu.edu
 - Closes when grades are submitted.
- General Relativity. Einstein's law of gravity.
- Cosmological constant has negative pressure.
- Gravity of Cosmological constant is repulsive.

Observations MLCS Lower plot compares data to a 42 model with density parameter 40 $\Omega = PE/KE = 0.2$ Distant SN are 20% fainter than 38 model with Ω = 0.2. $\Omega_{M}=0.24, \Omega_{\Lambda}=0.76$ 36 $\Omega_{\rm M}$ =0.20, Ω_{Λ} =0.00 Distant SN are 15% fainter than model with no mass ($\Omega = 0$)! $Ω_{M}=1.00, Ω_{\Lambda}=0.00$ Longer time to expand than for a universe having no mass at all! Shorter time means expansion 0.5 slowed down; longer time means ∆(m-M) (mag) expansion sped up. Einstein (about 1920, 70 years earlier) thought of "cosmological 0.0 constant," a kind of stuff where gravity repels. -0.5 The cosmological constant would make expansion speed up. Modern name for cosmological 0.01 0.10 1.00 constant is "dark energy." 12/10/2010 Ast 207 F2010 a=0.99 a = 0.9a = 0.5

AST207 F2010 12/10/2010

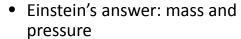
How did Einstein think of "cosmological constant," stuff that repels?

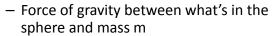
- Example of how physicists create new ideas.
- Figure out the appropriate mathematics to describe gravity.
 - Newton: Vectors describe gravity.
 - Key lesson: Physics must use mathematical object with the right transformation properties.
 - Space looks the same in all directions. Therefore physics equations must rotate. Therefor the mathematical objects must rotate.
 - Rotation is an example. There are other transformations.
- Figure out the consequences of the theory.

12/10/2010 Ast 207 F2010

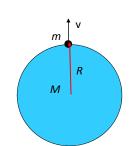
Einstein's path

- Einstein's happiest thought: "A man falling from a roof does not feel gravity" (until he hits the ground).
 - Remaining steps took 9 years of thought.
 - Realization that tensors describe gravity.
 - Figure out the required transformations.
 - Key one is that gravity can be eliminated by choosing the right frame of reference.
 - Write a tensor equation that has the required transformations.


12/10/2010 Ast 207 F2010


AST207 F2010 12/10/2010

Einstein's General Relativity


- What causes gravity?
- Newton's answer: mass.
 - Force of gravity between what's in the sphere and mass m

 $F = G M m/R^2$.

 $F = G (M + 3PV/c^2) m/R^2$

12/10/2010

Ast 207 F2010

Source of Gravity

Einstein's Law of gravity uses tensors.

Curvature of space = $8\pi G$ (Mass-Pressure tensor) Object feels curvature of space and changes its momentum

G and T are tensors having 16 components

 If on average the material is at rest, then T has 4 nonzero components.

The source of gravity, $(M + 3PV/c^2)$, is the sum of the 4 terms on the diagonal of **T** V.

Ordinary matter has little pressure because speed $T_{\rm matter} = M/V$ is much smaller than c.

 $3PV/c^2 = M (v/c)^2$ is negligible compared with M.

Radiation has positive pressure

 $3PV/c^{2} = M.$ $F = G 2M m/R^2$.

$$T_{\text{rad}} = M / V \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & \frac{1}{3} \end{pmatrix}$$

12/10/2010

Ast 207 F2010

AST207 F2010 12/10/2010

Cosmological Constant

Einstein's answer: mass and pressure

Force: $F = G (M + 3PV/c^2) m/R^2$.

- Sure $T_{\text{matter}} = M/V \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & (\frac{v_s}{c})^2 & 0 & 0 \\ 0 & 0 & (\frac{v_s}{c})^2 & 0 \\ 0 & 0 & 0 & (\frac{v_s}{c})^2 \end{vmatrix}$ then **T** If on average the material is at rest, then T has 4 components. source of gravity, (M + $3PV/c^2$), is the sum of the 4 terms on the diagonal of T V.
- Einstein in 1920s: My equations of gravity allow a special tensor. E called it a "cosmological constant."
 - T_{cc} has same mathematical properties as T_{matter} and T_{rad} .
 - The CC has mass and negative pressure. Normal pressure pushes. CC sucks.
 - The CC may exist in Nature.
 - "What is not forbidden is mandatory"—W Pauli

 $T_{\text{rad}} = M / V \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & \frac{1}{3} \end{pmatrix}$ $T_{\rm CC} = M / V \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$

12/10/2010 Ast 207 F2010

Cosmological Constant

Einstein's answer: mass and pressure

Force:
$$F = G (M + 3PV/c^2) m/R^2$$
.

- If on average the material is at rest, then **T** has 4 components. The source of gravity, $(M + 3PV/c^2)$, is the sum of the 4 terms on the diagonal of T V.
- 1. Write the force of gravity for the case of the cosmological constant. (Watch the signs.)

A.
$$F=G M m/R^2$$

B.
$$F=G(2M) m/R^2$$

C.
$$F=G(-2M) m/R^2$$

$$T_{\text{matter}} = M / V \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & (\frac{v_{s/c}}{c})^2 & 0 & 0 \\ 0 & 0 & (\frac{v_{z/c}}{c})^2 & 0 \\ 0 & 0 & 0 & (\frac{v_{z/c}}{c})^2 \end{pmatrix}$$

$$T_{\text{rad}} = M / V \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & \frac{1}{3} \end{pmatrix}$$

$$T_{\rm CC} = M / V \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

12/10/2010

Ast 207 F2010

AST207 F2010 12/10/2010

Cosmological Constant

- Einstein in 1920s: My equations of gravity allow "cosmological constant"
 - T_{cc} has same mathematical properties as T_{matter} and T_{rad}.
 - Pauli: "What is not forbidden is mandatory."
 - $F = G (M 3M) m/R^2$ $F = - G 2M m/R^2$.
 - Repulsive gravity
- Einstein tried to make his theory of gravity prevent expansion or contraction of the universe. The cosmological constant balances gravity of matter.
 - In 1929, Hubble discovered the expansion of the U.
 Einstein said the cosmological constant was "his greatest blunder."
- Had he lived to 1998, he would have called it his greatest discovery. $_{\mbox{\tiny Ast 207 F2010}}$

What is the universe made of? Spherical sample of universe. R=moon's orbit. Sample has - 3 oz of ordinary matter - 1 lb of dark matter - 3 lb of dark energy Ordinary matter—protons, neutrons, electrons - Stars, gas, dust, planets, us $-\Omega_{\text{matter}} = 4\%$ Dark matter—not detected except through gravity $-\Omega_{\text{dark matter}} = 23\%$ Light Mass density is small now. Dominant before universe was 1 Million years Dark energy - Repulsive $-\Omega_{\rm dark\ energy} = 73\%$ $\Omega_{\text{matter}} + \Omega_{\text{dark matter}} + \Omega_{\text{dark energy}} = 1$