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Experiment 1
Introduction to 191 Lab

1. Introduction

In Physics 191 we will make extensive use of Kaleidagraph [Kgraph], a software package for
graphing and data analysis, and Excel, for calculations. Kgraph is a substantial program but is
nonetheless intuitive and extremely easy to use. Two major things that Kgraph does for us are:

1. Plotting high quality, easily customized graphs of your data.
Curve fitting, i.e., finding the parameters of a theoretical function that best describe your
data. Kgraph provides estimates of the statistical uncertainties of the fit parameters, which
are difficult to obtain with other commercial software (such as Excel).

2. Goals:

1. Familiarize yourself with basic calculations in Excel

2. Familiarize yourself with Kaleidagraph's plotting, calculation, and fitting options
3. Get a first impression of the style of labs and analysis for the class

4. Have a first look at histograms and standard deviation

5. Have a first look at fitting and residuals

6. Have a first try at searching for flaws (“systematic errors”) in data.

3. Background

3.1 In this first lab, we will learn how to use Excel and Kgraph on a PC equipped with the
Windows XP operating system. Your lab report will contain printouts of the graphs that you
generate. The Reference Guide (RG), and your notes made while performing this lab, will
also serve as your guide for doing basic analysis operations. You may write your report
outside of class by hand or with Word. But you must use your time carefully in class to plot and
analyze your data. Since you will be changing lab partners regularly, take turns, and be sure
each of you understands the software. KEEP this write-up for reference in future labs.

3.2 For this laboratory exercise, you will analyze information from an actual mileage log kept for
a Prius automobile. The log usually contains an entry for each tank of gas purchased (missing
data were occasionally estimated). The Prius uses a hybrid engine system, with both a gasoline
engine and electric motors. The gasoline engine ultimately provides all the power, but a large
battery stores energy when the engine is not heavily loaded, or when the car is braking. The
electric motor uses energy stored in the battery to provide extra power after a stop, when passing,
when going in reverse, or even to allow the engine to be turned off temporarily. The battery and
electric motor allows the gas engine to run nearer its optimum efficiency, part of why the Prius
gets more miles per gallon than most cars.
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The odometer measures the distance (in miles) a car has traveled by counting the number of turns
of the tires. The amount of gas purchased is calculated by the gas pump. The Prius has a
dashboard meter that displays the miles per gallon (mpg) being obtained at the moment, and
since the last reset (in this mileage log, that usually means since the last tank of gas). These
readouts use the same distance measurement as the odometer, but the gas consumption estimate
is based on the time (measured in microseconds) that the computer has opened the fuel injectors.
This assumes that the fuel pressure is constant and therefore the amount of fuel consumed is
proportional to the time the injector was open.

4 Excel Data Calculations Goal: print 1* page of modified spreadsheet

4.1 Use the desktop shortcut to the R drive to open R:\exp1 ref\Prius.xls, an Excel file
containing the mileage log and some date information. Now SAVE to your computer’s U drive
space: File|Save As|U: (in Filename box)|Enter; pick your section folder and the expl folder
inside it. An alternative to typing U: is clicking the down arrow in the Save in box and selecting
bps1263xxxx. The Days column calculates number of days since the last fill-up. The month
column calculates the months, starting from the beginning of 2002, so month 7.5 is the middle
of July, 2002, and month 20 is the beginning of August, 2003. The Month of year column gives
the month, independent of year, so month 9.3 would be early September of 2002, or 2003, or
2004. Click on a cell and the formula used will be displayed.

4.2 Now you will calculate some other quantities from the original data using Excel formulas.
See the Reference Guide chapter on Excel if you need help. Calculate Miles (the difference in
OD readings from the previous date to the current; use 456 for the miles on the first tank of gas);
MPG Calc = miles / gallons; and calc/read = MPG Calc/mpg readout. Print the 1% page
(File|Print|Print Page(s) From:1 To:1). Then save and close your file: Kgraph won’t open the
file if Excel still has it open.

5. Kaleidagraph: Histograms and Statistics Goal: print 2 histograms and record statistics

5.1 Navigating Kgraph

5.1.1. See the Reference Guide for a terse introduction to basic Kgraph; use as needed.

5.1.2. You can modify an existing graph by double-clicking or right-clicking objects to bring up
a menu for that object: for example, the title of a graph, or an axis label.

5.1.3 Kgraph has a good Help system; the >> spins you through successive related entries.

5.1.4. If you want to print out the “Statistics” screen, or anything else you can’t figure out how to
print from a Windows program, hold down ALT and hit the Print Screen key. A copy of the
active window is now on the clipboard. Then open Word, and paste with Ctrl-V, and print the
Word document. The statistics screen or other clipboard contents can also be pasted into a
Kgraph Plot, or a Kgraph Layout window.

5.2 Begin your analysis of the mileage data by opening Kgraph, and using Kgraph to open the
Prius.xls file you just created. Kgraph properly opens an Excel spreadsheet with column
headings as long as the headings are in the first row.

5.3 Make a histogram plot of the MPG Calc column. The plot will consist of bars rising from the
x axis. In a histogram, data points are considered as being grouped into “bins” (ranges of values,
say x between 20 and 30, and so on). The extent of the bar along the x axis will represent the
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range of values of the variable in each “bin”, and the height of the bar (along the y axis) will
represent how many data points fell into each bin. For your first plot, make the histogram with a
bin size of 5 miles per gallon. You can find more about histograms by looking up the term in the
index of Taylor.

5.4 For every plot in this entire class you should: Give the plot a title which explains the reason
for this plot, such as Temperature Dependence of Velocity (metric units); no two plots should
have the same title. Include your name, section, experiment, and date in the upper right hand
corner of the graph (Help|Find|Text Tool). You can later copy/paste this text to other graphs.
Make sure that the graph labels, legends, etc. do not overwrite any significant part of the graph.
Label the axes of every graph with names and units, e.g., for a histogram Number of Log Entries
and Calculated MPG (mi/gal); or for a scatter plot, say Velocity (m/s) and Time (months). Print
your histogram and save it.

5.5 Now make and print the histogram with a bin size of 2 miles per gallon. Does the new
histogram look the same as the previous graph? Why or why not? Did you learn anything new
by changing the bin size? As you write in your lab notebook, or lab report, always include
the number of the part of the write-up (e.g. 5.5).

5.6 Now you will use one of the advanced functions of Kgraph to analyze the data. Click on the
frame of the data sheet to highlight it; then click on the MPG Calc column, and then click
Function|Statistics as described in the Reference Guide. Note the entries for Mean and Std
Deviation. The Mean is just the average value; Std Deviation is an abbreviation for Standard
Deviation, a measure of the scatter of the values around the average. Both are discussed in
Taylor. Write these two values down in your notebook or paste the statistics block onto one of
your histograms. On the histogram with 5 mpg bins, indicate the location of the mean, and draw
a horizontal line stretching from (mean — standard deviation) to (mean + standard deviation).

6. Kaleidagraph: Scatter Plots and Fits Goal: print mpg plot, fuzzy parabola fits and residuals.

6.1 Scatter Plot Now you will seek a better understanding of the mpg data by plotting it as a
function of time. Make a scatter plot of calculated mpg as a function of month, that is, mpg vs.
time. Whenever we say “y vs. x” we mean the first variable should be on the y (vertical)
axis and the second should be on the x (horizontal) axis. Do not use the Line Plot, as it is a
“connect the dots” plot not well suited to our uses: by default it doesn’t display much of the data,
and the lines both over-lead the eye and get in the way of fits we will apply to the data. Make the
data 18-point hollow diamonds (e.g. Plot|Variable Settings|Marker size|18). Label the axes of
the graph with names and units, e.g., Velocity (m/s) and Temperature (K). Does this graph tell
you anything about the reason for the structure you saw in the mpg histogram? How would you
explain it? Hint: look at the definition of month in section 4.1.

6.2 Next you will “fit” a mathematical model. The “fitting” consists of writing down a
mathematical expression (“curve”) with some unknown parameters and letting Kgraph
automatically try values of the parameters to find those that best “fit” the data. The
mathematical method Kgraph uses to find the parameters is called “Least Squares”. Least
squares fitting minimizes (finds the Least) the sum of the Square of the difference (“residual”)
between the measured data and the values predicted by the curve. This will be discussed in
detail in Chapter 8 of Taylor.
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To get a feel for fitting, you will now work through an example where the model is perfectly
known, and see how well Kgraph reconstructs the true model. Open and save to your U: drive
the file r:\exp1 ref\fuzzy parabola.xls. Then close it and re-open the copy in Kgraph. Make a
scatter plot of y = f(x) vs. x. Now fit the model a + bx + cx” to the data using the directions in
the Reference Guide. Write down the values you obtain for the parameters a, b and c¢. The curve
should pass perfectly through the data and Kgraph should report essentially zero uncertainty
(“error”) in the parameters. Check that you got the correct values by opening the

fuzzy parabola.xls file with Excel. Look at the equation used for the f(x) column and write
down the correct values of the parameters in your notebook.

6.3 Now make a new plot of fuzzy f vs. x. The “fuzzy” value was created by adding a simulated
“measurement error” to the value of f. (It is impossible to make a measurement which returns the
exact “true” value). [ used a random number between -1 and +1; the last column gives the
difference between the fuzzy and real value. Fit the fuzzy f data to the parabola. Print the plot
with the fit, the values of the parameters and their uncertainties. Are they close to the correct
values?

6.4 Now look at how the fit differs from the data by examining the “residuals”, defined as the
difference: residual = data- fit, at each data point. Kgraph uses fit-data, but that isn’t a big
problem. Make and print a histogram of the residuals (see Reference Guide). You should see
values roughly between -1 and 1: the differences between the fit and the data are about the same
as the “fuzz” we put in. If we’d looked at the residuals of the fit to the un-fuzzed f(x), the values
would have been tiny. Extra Credit: plot the residuals for the un-fuzzed fit.

7.1 Data Analysis. Goal: print fit to mpg vs. time; % difference between calc and readout

Now return to the mpg vs. month data. There isn’t a precise theory of how mileage should vary
with time, so the model will be approximate.

7.2 Make a fit with the cosine curve as described in the Reference Guide. You will need
reasonable starting values for this fit to work properly. Print the plot with the fit curve and the fit
parameters as labels for the figure. Also, histogram the residuals from this fit. Use the statistics
function to calculate the standard deviation of the residuals: this, as you just saw, is a measure of
how well the fit matches the data.

7.3 Now cross check of the two estimates of fuel consumption to see if they’re roughly
equivalent, and how close they are to each other. You can approach this question with the
techniques you’ve learned: plotting or examining statistics for the column mpg calc/readout, or
making a scatter plot of the calculated vs. readout miles per gallon and performing a fit. Choose
one of these techniques and find quantitatively, by how many % the two estimates differ
typically, and how much (in %) individual values vary about the main trend.

7.4 Extra Credit Questions. How might you study the mileage for highway as compared to city
driving? The data between Jan 1 and Aug 1 2003 correspond to a time in New Mexico rather
than Michigan; are there noticeable differences in the data due to the location? What might
cause these differences? What do you think is the capacity of the gas tank?
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7.6 Finishing up: As you exit Kaleidagraph, select ""None" in the dialogue box when you are
asked whether you want to save changes. It is advisable to back up files from the U Drive to a
USB flash drive if you will need your data for next week (the U drive is not backed up!):

1) Insert USB flash drive in front of the computer, or on USB extender

2) Open the U drive by double-clicking on the shortcut

3) Select in the Address box of this window your flash drive (F: or G:)

4) Again open the U drive by double-clicking on the shortcut (gives a second window)

5) Drag the files or folders from the U: window to the flash drive window

6) Left-click Safely Remove Hardware icon in system tray (bottom right)

7) Click Remove F; after it says it’s OK to do so, actually remove your flash drive.

8) Next time: Pick your program | Open |Type F: in “filename” box and hit Enter
To save to AFS space, open Internet Explorer to ftp://afs.msu.edu then log in and follow
directions to get an Windows Explorer window pointing to your area. Double click on the U
drive, and copy and paste files or folders between these two windows. To create folders or
rename files in this AFS window, you’ll to use need a computer outside the lab.

Finally, Log Out from Windows (this will erase all changes you made except for the files you
have saved on the U drive or your USB flash drive, and clean up so the next student sees the
same starting point as you did).

8. Summary Tables In each lab report you should present your critical results in summary tables
which organize your results for you, and for your readers. In many experiments you will also
need to organize your data recording in tables. At the beginning, we will give you explicit tables
to use; as time goes on, you should be able to think through for yourself what tables you will
need. For this experiment, your summary tables should look like the following:

Quantity Mean Standard Deviation

MPG Calculated

MPG Cosine Fit Residuals

MPG Calculated / MPG Readout (%)

f(x) fits a b Cc

true parabola parameters

f(x) fit parameters

fuzzy f(x) fit parameters

uncertainty of fuzzy fit parameters

To finish the report, read Taylor chapter 1, 2 (you may skip sections 2.6 and 2.9), 4.2, and 5.1 .
Read section 1.3 and chapter 2 especially carefully—they give the purpose of uncertainty
calculations, to be able to make quantitative comparisons between measured values and
between measurements and predictions. See also the Reference Guide (section 4) on the
important points on uncertainties.

If you have trouble using excel, complete the Excel Tutorial in the Reference Guide (section 2).
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See Reference Guide (section 7) for how to write a good lab report.

9. Questions to be discussed in your report:
9.1 Why should one look at histograms with different bin widths?
9.2 What do you think causes the structure you see in the finer-binned mpg histogram?

9.3 Are the parameter “errors” (the uncertainties given Kgraph) in the parabola fits of about the
size of the difference between the “fuzzed” parameters and the original ones? Is this what you
would expect, roughly?

10. Searching for Flaws: Where could the measurements be misleading? Any experimental
procedure is subject to errors of execution, mistaken assumptions, or biases. Part of our job as
experimentalists is to think about them. At the beginning of the term, we will guide your
thinking about these, but you should strive to be able to do this more independently as the term
progresses. Here we will suggest some sources of uncertainty in the data and procedures. For
items in bold italics, hints are given below: but try by yourself first!

10.1 What would happen to the miles per gallon if the tires were under-inflated? By about how
many percent might under-inflation affect the estimated distance traveled? Would under-inflation
cause a measurement to be too low, or too high?

10.2 The calculated mpg depends on the precision of the measurement of gasoline volume by the
gas station pump. What do you estimate for the fractional % of uncertainty in the number
gallons?

10.3 The calculated mpg in effect assumes that the gas tank is filled back up to the same level
after each filling. This is usually determined by the automatic shutoff. How accurately (in
gallons) do you think the shutoff valve at different gas stations measures “tank full”’? What %
uncertainty would this translate to for a typical tank of gas for this car?

10.4 From these considerations, and the data, to what % accuracy do you think the mpg is
known? For a measurement of 45mpg, how many mpg would this uncertainty be?

10.5 Is the scatter in the data about the fits larger or smaller than your estimate from 10.6? If
larger, what other effects might be causing such variations from one tank to the next?

10.6 Is the mpg according to the readout systematically different from the calculated value? By
how many % If so, which measurement would you tend to believe more? Why?

11. Improvements: What was the muddiest point of the lab? Where could the write-up be
improved? Be specific—state exactly where and how should it be improved.

Hints for section 10:

10.1 Speedometers are often off by 2 - 5 mph at 65 mph, so a 3 - 8% error in the speedometer is
not out of the question. However, that’s the speedometer, which is perhaps more complicated
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than the odometer. The odometer works by counting the revolutions of the tires and converting
turns into distance traveled. This assumes the tires are of constant circumference. The accuracy
implied by our uncertainty was = Imi/ 456mi = 0.2% which seems awfully strict when you think
of the change of shape in the tires when they are fully inflated vs. under-inflated. You might
estimate the tire height (diameter) might change 1/2 inch out of about 2 feet, or about 2 %, due to
changes in tire pressure, from being warm or cold, or over or under-inflated. (This alone might
give a | mpg apparent decrease for highway driving, which keeps the tires warm and records
fewer apparent miles (axle revolutions) than actual miles, giving a lowered mpg).

10.2 For a first estimate use the recording error of .1 gal; for 11.3 gal that’s 0.9% (though the
pump records more decimal places, that’s all that was recorded in the log). Assume that all
pumps are calibrated by the state to measure the same within well less than the 0.9 %
measurement error on a tank (at least we hope so). What about the definition of a full tank? Is
that repeatable from pump to pump? What is its uncertainty? Hard to guess again but it might
be another 0.1 gallon, or perhaps even more. This latter might not matter so much in the long
run: if the pump cut off early for one tank, you’d miss some of the gas you actually used for
those miles. But the next tank, you’d probably record some gas for miles which really were
recorded for the previous tank. Over time it would average out, but this uncertainty would
contribute to the uncertainty of any single tank.

10.5 If the scatter of measurements is large compared to your estimated error (as seen by either
the calculated vs. readout data, or the size of the fit residuals), then the measurement was
dominated by sources of uncertainty other than those you have thought about. These are
sometimes called uncontrolled variables. They might not have anything to do with the
measurement process itself, but rather changes in what is actually being measured. A driver
might be more interested in speed than good mileage on a particular trip. Weather, traffic, road
conditions, or the load carried might vary.
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Reference Guide for PHY191

Bring this Reference Guide to class each week
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1. Kaleidagraph Essentials

Histograms: use menus Gallery|Stat|Histogram|pick dataNew. To Change Bin Size:
Plot|Plot Options|SpecifyingTheBinSize|OK , then Plot|Axis Options|enter new bin size|OK

Statistics Highlight data column, then Function|Statistics and either write down results and |OK,
or |Clipboard|OK and then paste where you want them (Plot, Layout, or Word).

y vs. x scatterplot (x is horizontal!): Gallery|Linear|Scatter|select x and y variablesNewPlot

Curve Fitting CurveFit|General|[EditGeneral|Add|NewFit|give new fithame in box|Edit]
Entering equation: say want to fit a parabola y = parabola a + b x + ¢ x*. Kgraph’s convention
for the first fit parameter is m1 (and so on). So you could enter in the Edit box:

ml + m2*x + m3*x72; ml=1; m2=1; m3=1
where m1 stands for your parameter a, m2 for b, m3 for c. The extra equations give nonzero
guesses for the parameters which the fit routine must have to start from. Now, having entered
the expression you are fitting, OK|OK|CurveFit|General|fithame|check the box|OK
If you’d wanted an equation of the form C + a cos (k x + b), you’d use m1+m2*cos(m3*x + m4).
To display the fit equation, Plot|DisplayEquation. This shows you the fit parameters, and their
uncertainties (labeled “errors’). The value of m1 is the best fit value of a, etc.
Moving it: Click ParamsBlock|Cut(Ctrl-X)|Ctrl-L|Layout|SelectPlot|plot|Paste(Ctrl-V)|Drag
ParamsBlock;  Ctrl-L is equivalent to Windows|ShowLayout|KgraphLayout

Plot Resizing: Right-click within plot | SetPlotSize | click both Axis and Frame size | Enlarge
Frame size Y, but to less than paper size | drag Fit Parameters block to below the plot.

Residuals: To make a new column in the data window containing fit residuals, immediately after
you’ve performed the fit (or redone the fit): CurveFit|General|fitname|View|CopyResiduals.
Find the right data window by clicking on the small grid in the upper right of the plot window;
you can edit the data window column heading by double-clicking it.

If the function fit doesn’t look much like the data, you probably need to give better initial

values than 1. Do this by CurveFit|General|fithame|Define| then edit the initial values in the box:
ml + m2*cos(m3*x + m4); m1=45; m2=10; m3=30; m4=180

Why might these be better values? The C constant (m1) should be near the average y value; the

m2 should be the amount above or below the average; m3 should be such that the range Ax of

one cycle of x has Ax*m3=360 degrees (if Degrees is checked) or 2x if Radians is checked; and

180 (Degrees) would be appropriate for a maximum the middle of the range.

Remove a previous fit: CurveFit|General|fitname|Deselect

Multiple Plots per page: Windows|ShowLayout|click on layout| then a Layout menu appears.
Layout|SelectPlot|click on plot| for the plots you want on the page (2 or 3 will be big enough to
read). Then Layout|ArrangeLayout| and select say 2 or 3 rows and one column to arrange your

plots. You can drag, resize, or delete the plots; add text; or paste a clipboard.

It’s really best to just jump in, but the Kgraph tutorial (examples 2&4) offer more detail.



PHY 191 Experiment 1: Introduction 7/30/2009 Page 10

2. Introduction to EXCEL (and Tutorial)

This introduction will show you the basics you need for this lab. Open Excel by double-clicking
the icon with the mouse. Then open a new spreadsheet by File | New (and possibly Blank
Workbook). Files that end in “.xls,” are Excel spreadsheets. You can copy and paste data
from the Excel spreadsheet to the Kgraph spreadsheet. Kgraph can open a spreadsheet too,
and if it’s just data and single-cell column headers in row 1, it will label the columns.

The Excel spreadsheet is made up of rectangles called “cells.” To enter text into a cell, click on
the cell with the mouse, type the desired text, and press Return or Enter. To execute a formula
in a cell, you must always first type “=" (an equals sign), followed by the desired formula. For
example, to compute 5+6, type “=5+6" into an empty cell and press “Enter.” The answer, “11,”
appears in the cell where you entered the formula. The formula you entered in the cell appears at
the top of the screen under the menu bar. This works for any cell: to see a formula, just click on
the cell and the formula for that cell appears at the top of the spreadsheet.

Now we will fill a column A labeled X with numbers ranging from 0 to 1.4 in steps of 0.2. Do
not take the time to do this all by hand! You can have Excel do it for you. In cell Al enter X
and type Enter. In the next cell of the column, A2, enter 0, our first value. Then in A3, we can
give Excel a formula we want it to follow in order to fill in the rest of the column. In each cell,
we want it to add 0.2 to the value in the cell just above. That will fill in the column in steps of
0.2. Therefore in cell A3 enter the formula “=A2+0.2” and press return. Highlight 7 cells of the
column, starting with the cell that has the formula in it, A3. Then go to Edit | Fill | Down and
then let go of the mouse button. Your column should be filled in increments of 0.2.

In the next column B (Label it Sin(x) in B1) you are going to compute the sine of X using a
formula. In B2 type “=Sin(A2)” and hit Return. By typing A2 in the parentheses we are telling
Excel to take the sine of the value (in radians) which it finds in A2. Then you can use the same
process as above to “fill-down” the entire column. If you do this just as described above, Excel
knows to start with A2, take the sine of each successive value in the A-column, and place the
new value in each successive cell of the B-column. Now repeat this same procedure, only this
time for cosine X in the C-column.

More hints:
e If in doubt, use parentheses to make sure things get calculated in the right order. For example,
3 + 5/2 results in 5.5, but (3 + 5)/2 results in 4. It would have been better to use 3 + (5/2) in
Excel for the first case.
® To check your spreadsheet formulas, type Ctrl-" (that is, hold down the Ctrl key and type the
* key (which has a ~ above it). If you now print your spreadsheet, you can see all the formulas.
Save it with a new name, adjust the column width, and use page setup to print landscape, say to
fit to 2 pages wide x 1 tall. You can use Print Preview before printing to check.
e Typing Citrl-" again toggles back to showing the calculated numbers.
e Instead of typing a cell number (say O27) you can click on the cell while entering the formula.
® You can change formatting with the % and .00 — .0 and .0 — .00 buttons.
e The formula =A17 copies the contents of cell A17 to the cell containing the formula.

Copying formulas: The menu command Edit | Fill | Down is equivalent to:
click the cell with the formula cell will be highlighted, with dark borders
hover mouse on lower right corner mouse pointer turns from a hollow to a solid cross

drag the mouse down over more cells the formula is “copied”
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When the formula is copied, the cell references change automatically! So if your formula in A3
was A2+.2, when it is filled or dragged down to cell A4, it becomes A3 + .2 ; if you are doing
the same set of calculations on a whole column of numbers, you can set up the formulas in the
first row, then highlight and drag down the formulas in several columns at once.

A similar process allows you to copy formulas sideways (across columns), or copy and paste into
another column. Put 100 in D2. Next, enter =D2 in D3 to copy D2’s contents. Now highlight
A3:A8, hit copy (Ctrl-c) and then move the mouse to D4 and paste (Ctrl-v). This fills the D
column with numbers spaced by .2, but starting from 100.

Sometimes this automatic renumbering isn’t what you want to do, so you need to be able to stop
Excel from adjusting cell numbers. One way to always refer to single cell is to give it a name.
Type 10 into cell E1. Highlight E1, then click your mouse in the name box (it will say E1) left
of where the formula appears. Type fred there and when you use the name fred in your formulas
and it will always refer to that specific cell. Enter in E3 the formula =fred*A3 and copy it down
through E4:E9. You should see numbers ranging from 1.58 through 25.12 in the E column.

When your spreadsheet is complete, make sure you save and print!

Common operations in Excel
you can substitute cells for numbers with these operations

What? Mathematics Excel Equation Value
Addition 11+12 =11+12 23
Subtraction 29-21 =29-21 8
Multiplication 30 x 15 =30*15 450
Division 44 /12 =44/12 3.66666667
Example 3+ e 3x7 =3+ (4/(5*%2) - (3*7)) 17.6

X
Power 6 = 67(.3) 1.7117
Exponential ! = exp(6.1) 445.86
Square Root V3% +47 = sqrt (32 +4"2) 5
Sine or Cosine Sin(x) or Cos(x) =sin(x) or = cos(x) x = .5 (radians): sin = .479
Pi Cos (2 T x) = cos(2*pi()*x) 809 forx =.1
Operations on groups of cells: use as an example cells A3...A9 containing .2, .4, ....1.4

The group can be denoted by A3:A9, or you can highlight a group of cells while entering the
formula

Sum > a =sum(A3:A9) 5.6
Mean = average(A3:A9) 0.8
Standard Deviation = stdev(A3:A9) .316
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3. Significant Figures

In calculations, it is always important to distinguish significant figures (s.f.) from
insignificant figures in the final presented numbers. The rules in Taylor section 2.2
describe things rather well. We add the following comments.

1. The smallest digit in the final reported value should be of the same order as the
smallest significant digit of the uncertainty. Since the error of the measurement is only
an estimate of the uncertainty of the measurement, we keep only the two most significant
digits (when available); we keep 2 s.f. so we can calculate t values to 2 s.f. Examples:

Incorrect Correct

517.436 m £ 12.34 cm (avoid mixed units) 517.44£0.12m

24.3441364 £ 0.0023 m/s 24.3442 £ 0.0023 m/s

12385s £241s 12390 £ 240 s or better (1.239 +.024)x10*s

2. Perform intermediate calculations to a few more figures than you know to be
significant (this avoids inadvertent loss of significance) and apply rule 1 for final results.

Rules 3-5 describe which digits are the minimum that are known to be significant. These
rules also help when you have no explicit uncertainty calculation at the end, and are just
calculating from inputs with a fixed number of significant digits.

3. When adding or subtracting two numbers, the result should have the same number of
the significant digits after the decimal point as the least precise summand. Example:

4. When multiplying or dividing, the result should have the same total number of the
significant digits as the least precise multiplier. Example:
1234.3 x 23.45 ~ 28940

5. For other operations (raising to power, square root, exponent, sine) a rough and ready
rule is to keep at least as many significant digits in the final result as you had in the input.
Example: Sin(3.567 radians) = - .4127
Complex functions can increase or decrease the number of actual significant digits by 1,
depending on the function and the argument. For example

Sin(3.567 radians) = - .4127; Sin(3.568) =-.4136 lost nearly 1 digit: .4127 £ .0009

But V6.567 = 2.5626; V6.568 =2.5628  gained 1 digit: 2.5626 + .0002
Raising to powers > 1 may lose significant digits, and powers < 1 may gain them.

6. More subtle points: when you average many measurements, the standard deviation of the
mean becomes small compared to the least significant digit of individual measurements,
indicating that the mean has more significant digits than the individual measurements. This will
normally be covered by following rules 1 and 2. Similarly, if you wish to calculate a t value to
2 significant digits (in order to compare it with 2.0, as suggested in the Uncertainty Calculations
section below), you will need to estimate your uncertainty to 2 significant digits.
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4. Uncertainty Calculations: Critical Things to Know

Justify your uncertainty: Give a specific reason you chose dx as the uncertainty for the
measurement of x. See examples in Taylor §1.5; §3.1-3.2; and §1.6, §4.1-4.6 for standard
deviation and standard deviation of a mean for repeatable measurements.

Compatibility (§1.3, 2.4-2.5): The whole point of quantitative measurement with
uncertainties is to test hypotheses, and compare results. Say you measure q, and you
compare it to p (the expected value). Define the discrepancy as the difference of your result
from the result expected by some hypothesis:

\ D = q — p = measured - expected \
The best way to describe the degree of discrepancy of p and q is in terms of the number of
standard deviations (the “t value”) of their difference from expectations:

dD is the uncertainty of D (its standard deviation, for Gaussian
uncertainties).
The “two standard deviations” rule says p and q are compatible as long as [t| < 2.
Typically 8D = V(8q* + 8p®); or just 8q if p is well known (so 8p is tiny). Best practice is to
calculate t, then say something like “the difference is 1.6 times its uncertainty, so the
measurements are compatible by the 2 standard deviation rule.” If |t| > 2, we would call p and q
statistically incompatible, or call their difference statistically significant. To obtain a t value of 2
significant digits, keep 2 s.f. in uncertainties.

If your uncertainties are Gaussian, and correctly estimated, and the assumptions (hypothesis)
leading to the expected value are also correct, a |t| > 2 deviation would occur by chance only
about 5% of the time. So large |t| values suggest real disagreement from what you expected,
while small [t| values are compatible—not proven to disagree. If you measure poorly (3D is
large), your result is compatible with almost anything: not a very useful measurement.

Occasionally we use a simpler criterion compares |D| with 6q + 0p (the worst case for dD, but
allowing only 1 standard deviation difference): this is just “do the error bars touch”.

We are often also interested in the fractional deviation the measured value from what we
expected, which is just D/p = (q-p)/p . The D(%) (% deviation or % difference) is the same
thing expressed in percent. D/p or D(%) is all we can report if we don’t know dD. But just
because the percent difference is small, does not necessarily make it insignificantly different
statistically. That’s what the t criterion is for.

Know the Uncertainty Calculation Formulae (§3.3-3.7; 3.11) on inside covers of Taylor, and
how/when to use them. Some hints:
Forq=x=*y, X,v,q,dx, dy, and dq must have the same units (so I can add q + dq: error bars)
The fraction uncertainties 8q/q, 6x/x, dy/y all have NO UNITS (can write as a fraction, or as %,
but watch the factor of 100!)

But to get dq, don’t forget to multiply q % (6q/q)
How to check your calculations to see if they make sense:
q=x+ty always must have:  8q > max (dx , dy)
q = x*y or x/y always must have d9/q > max (0x/X, 0y/y)

Independent measurement: no relationship in the imperfections between the measurements; e.g.
2 students measure the same distance each with a different, but good, ruler. A measurement
dominated by a systematic error (same shrunken ruler used by both students) would produce
results that aren’t independent. See Chapter 4; needed to apply Chapter 3 formulas.
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Random: you expect to get slightly different values each time you measure it: due to reading
uncertainties, varying judgments, uncontrollable factors, or inherent properties of the
measurement.

Standard Deviation and Standard Deviation of the Mean

The standard deviation ( 6 ) is a measure of the uncertainty of any single measurement. The
standard deviation of the mean, ¢, = 6/ VN , 1s a measure of the uncertainty of an average of N
such measurements. Clearly, the average is better known than a single measurement.

Examples
q =x/y Often easiest to do in terms of %
x=10 ox=.10 y=2.7 0y=.20 soq=3.7
8q/q =N(1% + 8%) ~ 8% so 8q~.08xq=~.3 (notice 8% — .08, the factor of 100)

Whip out your calculator now: Let’s try =10 and &r=.1, so what’s the fractional error for r?
or/r=1% Now say q=r” then what’s ~ 3q/q="?

From Eq 3.23, 3.26:

8q/q=(|dg/dr|dr)/*=28r/r=2%
For comparison, you can calculate changes in q directly (the most general way, rather than the
Chapter 3 formulas, which rely on first derivative approximations):

(q+ 8q)/q = (r+8r)* /1" = 102.01/100 = 1.0201 = (q+8q)/q, so 8q/q =2.01% (same as
o0q — 0)

A More Complicated Example Calculation (See Step by Step: Taylor Chapter 3.8)
q=x"y+z"? x=10+.1 y=20+.2 z=10000=+ 1800

ox/x = 1% dyly = 1% 0z/z=18%
letw=2z"% =158 x%y=2000 andq=2015.8

Let’s start with the product term: x’y

8 (x%y) / (x*y) = V{ (6x¥/x®)* + (Byly)* } = V{ (2 x1%)* + (1%)* } =22 % ~2%
notice we have used & x* / x*= 2 dx/x: the 2 goes inside the parentheses!

50 & X'y =Xy * (8 X’y / x7y) = 2000 x (2%) = 40
Now ow/w = 1/3 (0z/z) = 1/3 x 18%=6%,s0 ow=6% xw =.9

notice that 6% is NOT rounded up to 10%, nor is .948 rounded up to 1

in each instance we keep the first significant digit, though a real calculation, it might
make sense to keep two digits or even an extra digit. Here w has more significant digits than z:
15.8 + .9 compared to (10.0 = 1.8) x 10° !
Finally, since q = x’y + w, 8q=" { (40)* + (.9)* } = 40

So q=2015.8 + 40, or 2020 + 40 = (2.02 + .04) x 10’ after significant figures.
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5. Log Plots and Guessing Functional Relationships

In Kgraph, from Plot | Axis Options you can choose Linear (default) or Log (logarithmic) for
either the x or y axis. Let’s see how this might help you: For this discussion, we will assume
logarithmic means natural logarithms, log to the base e. See also Taylor §8.6 . In Kgraph you
can select Log from Plot | Axis Options, or make a new data column with, e.g. In(c5) or log(c5).
When using log scales, you should also use Plot | Axis Options to choose minima and maxima so
that your displayed data fills much of the plot area, not just a small corner.

1) Semi-log plots

Suppose the true relationship is something like y = y(x) = ¢™ (the constant a might be positive
or negative). If you ploty on a log scale and x on a linear scale, this is a semi-log plot
(logarithmic on only one axis). Then you would be looking at Ln(y) vs. X, and substituting the
true relationship y(x), your plot would display -ax vs. x.

That is, exponential relationships produce straight lines on a semi-log plot and the slope is
equal to the coefficient of x in the exponent. To find the slope, you could perform either the
nonlinear fit y = Exp(- a x), or a linear fit to the semi-log plot, fitting Ln(y) = -a x. These fits
will give somewhat different answers as equal weighting in y assumes different uncertainties
than equal weighting in Ln(y).

2) Log-Log plots

Suppose now the relationship between y and x is of the form y” =a x?. A linear relationship (y
= a x, with no additive constant) is a special case with p=q=1. Assuming y and x are positive,
you can take the p-th root and recast of this relationship as y = y(x) = b x", where b=a "2 and u

=q/p.

If you plot both x and y on a logarithmic scale, it’s a log-log plot. Then you would be looking at
Ln(y) vs. Ln(x) , which, on substituting the true dependence y(x) would yield
Ln(b) +u Ln(x) vs. Ln(x)
That is, power relationships of the form y* = a x? produce straight lines on a log-log plot.
The slope is the power u, to which x is raised to give y. For y = x*, on a linear plot you get a
parabola—not straight. But a log y vs. log x plot (for x > 0 !) gives a straight line of slope u=2.

You can find this slope by rise over run by measuring distances directly on the graph:

u= [ Ln(y;) - Ln(yo) ] / [Ln(x;) — Ln(xo) ]
This works directly from the plot, as long as the y and x scales are the same. It’s the same as

u = Ln(yi/y,) / Ln(x1/X,)
which makes it obvious that the units cancel, and all that matters is that a given factor (e, or 10,
say) takes up the same amount of space on the y and x axes. You could also use either formula
with coordinates of points on the line.
Or you could perform either the nonlinear fit y = b x", or a linear fit to the log-log plot, fitting
Ln(y) =b +u Ln(x). These fits will give somewhat different answers as equal weighting in x or y
assumes different uncertainties than equal weighting in Ln(x) or Ln(y).
To really test these relationships well, you should ideally:

Compare the fit quality with an alternative, such as a straight line

Have more than 3 data points

Have data covering at least a factor of €? (= 7.4) to 10 in range of x and y.
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6. Using a Vernier Caliper

A vernier caliper consists of a high quality metal ruler with a special vernier scale attached which
allows the ruler to be read with greater precision than would otherwise be possible. The vernier
scale provides a means of making measurements of distance (or length) to an accuracy of a tenth
of a millimeter or better. Although this section will be devoted to the use of the vernier caliper,
vernier scales can also be used to make accurate measurements of other quantities, such as
angular displacements.

SAME DISTANCE AS
BETWEEN JAWS

0 2 4 6 8 10 CM
AR nnnn
||||||||| | |||||||‘|||||||||‘|||||||||‘||||||||| |||||||||‘|||||||||
1 2 3 4 5 6 7
0 1 2
12 34567 829
|||||||||||||||||||||||||||||||||||||l||||||||||||||||||1||||
|||||||||||||||||||||||||| INCH
0 5 10 15 20 25
4>
JAWS RULE
VERNIER SCALE

Figure 1: Vernier Caliper

Looking at the vernier caliper in Fig. 1, notice that while the units on the rule portion are similar
to those on an ordinary metric ruler, the gradations on the vernier scale are slightly different.
The number of vernier gradations is always one more than the number on rule for the same
distance. The line on the vernier which is aligned with one on the rule tells us the fraction of the
units on the rule.

To use the vernier caliper:

(1)  Roll the thumb wheel until the jaws are completely closed (touching each other). Now

check whether the caliper is reading exactly zero. If not, record the caliper reading, and subtract

this number from each measurement you make with the caliper.

(2) Use either the inside edges of the jaws, or the outside edges of the two prongs at the top of
the caliper to make your measurement. Do not use the tips of the prongs. Roll the thumb
wheel until these surfaces line up with the end points of the distance you are measuring.

(3) To read the caliper:
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record the numbers which correspond to the last line on the rule which falls before the
index line (marked as 0) on the vernier scale. In Fig 1, this would be 1.4 cm since the
index line falls after the 1.4 cm line and before the 1.5 cm line.

count to the right on the vernier scale until you reach a vernier line which lines up with
a line on the rule and record the number of this vernier line as your last digit. In Fig 1,
it is the vernier line marked 4 (rather than the 4.5 line, say) which is aligned with one
on the rule. The full vernier scale corresponds to one small division on the main scale,

that is, .1 mm, so the vernier tells us to add .4 * .1 = .04cm, so the whole distance is
1.440 cm.

Alas, the inch scale vernier of Fig 1 is not marked correctly; the correct corresponding reading
would be .567 inches, so the inch vernier should have lined up at about 17 instead of 25: .55
inches + .017inches).

The following examples show vernier scales similar to that on the vernier caliper, to allow you to
test your ability to read a vernier caliper.

0O 2 4 6 8 10 0O 2 4 6 8 10
L v by by |y A I T SR N
IIIIIIII|||IIIIII|I| rrr1rr1rr1r1r 1711717 1T 1T T T T
30 40 50 20 30 40
Ans: 32.9 Ans:
0O 2 4 6 8 10 0O 2 4 6 8 10
I R NI I R NI I ARI R A
IIIIIIIIIIIIIIIIII| |IIIIIIIIIIIIIIIIII
30 40 50 20 30 40
Ans: 32.1 Ans:
0O 2 4 6 8 10
I I T NI
T T 1T T T T T T T T T T T T
20 30 40
Ans:
0O 2 4 6 8 10
Lot v by 1y
T T T T T T T T T 1T T T T
20 30 40
Ans:
0O 2 4 6 8 10
Lo by b by 1y
T 1T 1T 1T 1T 1T T T 1T 1T T T T 17T
20 30 40
Ans:
0O 2 4 6 8 10
Lo b by P 1y |
T 1T 17T 1T T 1T T T 1T 1T T T 1T 17T
20 30 40

Ans:
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7. Writing a good lab report

The Notebook: Write what section number (say 4.1.1) of the lab write-up you are working on!
Record your original measurements (with units) in your lab book. Include your estimates of
uncertainty and their justification for the measured quantities (it might be more uncertain than
the finest you can read the instrument!).

Answer all questions posed by the lab write-up, either as you proceed, in the notebook, or in your
report (again, with a write-up section number for reference. All your work should be in the lab
notebook - including any mistakes or duplicate measurements. Your lab notebook records what
exactly you did, including any false steps. Errors should be neatly crossed out and a note should
be recorded in the lab book indicating the nature of the mistake. This is the method used by
practicing scientists for the recording of their experimental measurements. Write in pen—no
pencils or erasers in lab. Write legibly; it can’t be graded if it can’t be read.

Analysis of results with Kaleidagraph and Excel
Calculate derived quantities from the original data and uncertainties
Plot data with correct labeling and uncertainties (error bars)
Class info in upper right corner, a descriptive title, labeled axes with units, etc.
Titles should distinguish graphs from each other.
Check that your results make sense: smooth graphs; consistency in tables
Find best fit lines, curves, and fit results as needed

Testing for statistical consistency: learn to use formulae in Taylor
Use uncertainties to compare two results (calculate the t value)
Use uncertainties to compare a result with an expected value (calculate the t value)

Lab reports

The goal is to clearly communicate your analysis and results. You do not have to do everything
in Word: by hand is fine, provided it can be read. Or you can do text in Word, but write in
equations and sample calculations to save time. Your report will consist of: the report proper
(written or typed); pages from your lab notebook (the duplicate sheets or the photocopies) and
printouts of spreadsheets or graphs.
In the upper right hand corner of the first page put:

Your name

Your partner’s name

PHY 191 section xxx (your section’s number)

Experiment #

DO NOT make your grader hunt for things! Follow the section order of the lab write-up.
Staple things in an order so the report can be read. Notebook pages and figures should be near
where they are referred to in the text. Use the order: report text for a section, then notebook
pages, then figures, then spreadsheets, then back to text for the next section; it won’t be
perfect, but the idea is to make it as easy to follow as possible. Section numbers from the lab
write-up for answers to questions are critical; it is good to add them to printouts as well. If
there’s more than one figure in a section, to refer to them in the text you could either assign
figure numbers (Fig 6 and 7) or call them something like Fig 5.4.3 A and 5.4.3 B.
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For each part of experiment, in the order given by the lab manual, your report should have
1. Formulae and a sample calculation for each calculation type
a. In words, why did you choose this formula (e.g. “independent random errors™)
b. The sample calculation is required
2. Use summary tables to organize results (often, a spreadsheet printout) . These really help

you to focus on the final results.

a. Give a summary table for each part of lab
b. Use an overall summary at the end if comparing results across parts
For example:

o0x(cm) | L(cm) | W(cm) | H(cm) | Mass(g) | V(ecm”3) | Density | Material Expected
g/cm”3 Density
Ruler |.1 1.5 2.0 1.3 100.0+.1 | 3.9+4 2.5+.3 Aluminum | 2.7
Caliper | .01 1.47 |2.03 1.31 100.0+.1 | 3.92+.04 | 2.61+.07

3. Note whether results differed from your predictions; why?

At the end of your report, include the final discussion of the experiment:

Answer the questions asked in the lab manual
Make quantitative compatibility comparisons where relevant
(for multiple measurements or experiment vs. theory)
What do you conclude based on the above comparisons?

What did you learn about physics from this lab? About procedure?

Give the muddiest point(s) of the lab:Give specifics!
not “this was bogus” but
“the readings didn’t cover standard deviation but it was needed in part 4b”
or. suggest an improvement to the techniques, the lab manual, or Taylor
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8. A Sample Report

Below is a good example of a lab report for 191 on an experiment we aren’t doing. It is not
perfect, but should give you a feeling for what a good lab report might look like. The
“Objectives” section isn’t usually needed. Here it replaces a lab write-up, to help you read the
report. Notice:

Equations and sample calculations

Lab book pages, tables, and graphs inserted as needed in the text

Good labeling and referencing of tables and figures

I would have liked clearer comparisons of the measured values and expectations, along the lines
of:

Page 29 or 31 We expect g = 9.804, and measure 9.780 + .019 cm/s> . Our measurement of g is
consistent with expectations since the t value of the discrepancy is t = -.024/.019 = -1.3 standard
deviations, less than 2 standard deviations from the expected result.

Page 35 as the report text says, the rate of change is compatible with 0; better would have been
to say: Then the coefficient is -.021 & .017 J/kg s, which, though it is nonzero, is also
statistically consistent with zero (t =-1.2)

Page 36 Ideally the student would have had time to perform the fits with a custom function, in
which case the uncertainty in the parameter would have been available. Then they might have
written:

Here is a table with the various parameters of the quadratic fits, and their sums. The sum of each

is expected to be zero. The uncertainties on the sum of the terms come from:
8(a +b) =V {(8a)*+ (Bb)*} andt=(a+b-0)/(@ +Db)

Term PE/m KE/m sum Error(sum) t

constant 0 0.015 0.015 0.02 0.7
Linear -2.06 2.18 0.12 0.07 1.7
guadratic -47.86 47.52 -0.34 0.13 -2.6

The constant and linear terms are consistent with zero, but the quadratic term is not consistent
with being zero, because |t| > 2.
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Roshan Foadi
(Jim Linnemann)
PHY 191 Sec. 8
Experiment 2

Energy of a Free-Falling Body

Objectives:

1) To observe the changes of the potential energy (PE), the kinetic energy (KE), and the
total energy (TE), of a free-falling body.

2) To verify, graphically, that the TE remains constant in time.

3) To compare the theoretical predictions for the time dependence of the potential
energy and the kinetic energy, with the experimental results.

PART 1

In this part we want to test the conservation of the TE of a free-falling object. In the Behr
apparatus, an object is released from a given height. Falling down, it marks periodically a
tape, with period 7=1/60 s. The latter quantity is given with negligible error. We ignore
the first and the last marks on the tape, because they are affected by the systematic errors
connected to the motion beglnmng and the motion end. Therefore, the second mark on
the tape corresponds to the 0" point in Tab.1. We assign the instant /=0 s to the O™ pomt
so that the n™ point corresponds to #=n/60 s. We measure the distance of the n® point

from the zero-tick of a meter stick, and denote it by y,. The error on y, is &=0.0008 m,
as explained in the lab book.

Equations Used

The instantaneous velocity at the n™ mark is

"‘Z -
0% - Oép 1.9840- 10"
M OM exc: \ = s 38k15'M
&
The corresponding error is

| 20-10 o
Vv = z&, = {% = — = 45040" Y
"t b — s
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The relationship between position and time, and between velocity and time, in a free

falling object, are
yt)= g+t +7gtt
Vit) =0, + 4t

where, v# is the velocity at the instant r=0, and g is the gravitational acceleration. In

Fig.1 we plot velocity vs. time. A linear fit gives the value of g. The error is given by the
furmulas reported in Taylor, Chapt.8:

jN{'u-i) 7l

[ = stomdard deviohom of the kesiduals = £.795-45
N=+# ﬂg’_ reasarement = 2%

A= m(ﬁgtﬁ Zi;n) 4. 6L

We obtain:

af/ = (_3,130: O.ﬂifj) om [s?

We calculate the potential energy per unit mass, PE,/m , at each point n. The formula is

B = ) (> oo m-@w)

The error associated to, PE,/m is = -H a56 =

PEx
&rm

- cigffj%-i)p Jviéf}(ﬂx é%: )
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Then we calculate the kinetic energy per unit mass, KE,/m at each point n:

1 « Saf
Ko _ i_n{ni (Ek, E%: 145’ g;_:fﬁ.azz;r)

| error is |I, ﬂ{;‘ -&@E:"h-
bﬁr%-ﬁﬂgjﬂg=ﬁdm=%—é} (fxm )

Finally, we calculate the total energy per unit mass, TE, /m at each point n, which is
given by

TE,
TEm/rM = ﬁ/wui—l.{ﬁ;/w (Ex (—;—?:#ﬂ.iﬁ}IJ- :,?.f_?,ﬂm
with the experimental error = 1649 J
Te
5}5,; 5@-}39— ex. 0 e
VY i e o
Results

All of these quantities are reported in Tab.1. In Fig, ', we show the plot of TE/m vs. time.
Based on the Chauvenet criterion, we reject the 24", the 28% and the 29™ points, which
are sensibly different from the other ones. We also discard the 0" point, since its velocity
is unknown: it cannot be zero, because we ignored the first mark on the tape. As a
consequence, also the total energy is not zero, as it is clear from Fig'1.LThe new data,
after the wrong numbers have been rejected, are shown in Tab.2. Note that we can assign
a velocity to an even lower number of points. The value we get for g is smaller than what
we expect (g=9.804 m/s’). A possible explanation for this discrepancy lies in the
apparatus oscillations during the free fall. All the quantities in Tab.2 have been calculated
based on the obtained value of g. In Fig.2 we show the new TE/m vs. time plot, with the
statistic of the residuals. The constant term, in the linear fit, gives the initial TE/m. Its
EITOT is
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The lincar coefficient gives the TE average rate of change. Its error is

- N(N-1) OF 7= 1 68452 T
kle = [—— — 66340 -

We summarize the results for this part in the table below. We observe that the rate of
change is compatible with zero, but a negative value is more likely. This energy loss is
probably due to the friction acting on the falling body. We also observe a clear oscillatory
pattern. These oscillations are mainly along the tape x-axis, as we assumed in the lab
book. They affect the speed measurement, because one has to take into account the total
distance between the two points, not only their vertical displacement. Therefore, a more
accurate measure would require one column for the x-position, in addition to the column
for the y-position of Tab.2, )

gim's"2) Em(mis'2) TEm{EON10M2Mg) Em(10M2J0kg) Rate (1002 Mkg's)  Em (102 Jhgts)
978 0.Me 25 12 2.1 4

PART I

In this part we compare the theoretical prediction for the PE and the KE as functions of
time, with the experimental curves.

Equations Used

Inserting the equations for y(t) and v(2) in the formulas for the PE and the KE , we obtain

el g ) - gt

falll
<. g pl e hte

NOTE - THE ABS. VALLE
OF THE LINEAMR aND QUADRATIC
COEFTICIEATS ARE IEENTICAL
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Resulis

The PE/m vs. time, and the KE/m vs. time plots are in Fig.3 and Fig.4, respectively, with
the statistic of the residuals. The absolute values of the linear and quadratic terms, from
the PE and the KE fits, do not coincide, The main reason for this, once again, is the
oscillations of the apparatus, which affect the speed measurements, mainly because we
ignored the x-displacements. They also affect the y-position measurements, since an
oscillation is never purely transverse. However, the single fits for PE/m and KE/m are
excellent, as the correlation coefficients show.,

Questions for Preliminary Discussion

1) Discuss the time PE=TE and the time KE=TE for an object in free fall. What happens
at these points? That is, what are the position, speed, and acceleration of the object at
these points?

The condition PE=TE corresponds to XE=0: this happens at the beginning of the motion,
right afier the object is released. At that instant the speed is zero, and the acceleration is
g. The condition KE=TE corresponds to PE={: this happens at the end of the motion,
right before the object touches the ground. At that instant the speed has its maximum
value, Vma=2TE/m, and the acceleration is of course still g.

2) A student says that the TE of a body is 2.3 J. A different student says that the TE of
the same object is 532.2 J. What do you think is the reason of this discrepancy?

The TE of an object is defined only up to a constant, which is arbitrary. For example, if
we decide that the PE at the top of the free-fall motion is zero, then TE=0. In the same
way, if we decide that the PE at the bottom of the free-fall motion is zero, then
TE=(1/2)m Vypaa''-

TIT,

.'ﬁﬁ::ZZZIIZ.'IIﬁIIlﬁﬁﬁﬁi:é{@ﬁzﬁijf@%:ﬁ:Z::ﬁ:’.::ﬁﬁfIIIII."_"T"'"'"'"""'
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Questions to be Discussed

1) Does TE/mass depend linearly on ¢? If not, what kind of time dependence does it
show?

The plot TE/mass vs. 1 is shown in Fig.2. We observe that the dots form, approximately, a
sinusoid whose middle point falls down roughly linearly. The reason for this behavior is
in the systematic error due to the apparatus oscillation, which we (mistakenly) neglected.

2) Does the fit curves for PEfmass and KE/mass fall within the experimental
uncertainties?

The curves, for KE/mass, and, especially, for PE/mass are very accurate: there is no
point, in each plot, that does not contain the curve. We were careful not to overestimate
the error, and tried to be as accurate and precise as possible in determining the mark
positions on the tape. In this way we reduced the only source of casual error to the
minimum, since the time intervals are extremely accurate,

IIIiﬁi.’i.’I,'ﬁiﬁﬁﬁﬁ.'ZjZIfiéﬂﬁ?ﬁjII:IZJ.’Z’.ZZII.’""""""“"""”"'

S -
(Q“:‘S '"EZZIIZI:IﬁIﬁ.'.'fIIIZJ:ZZIJ...Z.’I"”'

i 1 LR E R LR R T R R

Conclusions

In the first part of this experiment we tested the conservation of the TE for a free-falling
body. First, we found the gravitational acceleration, by linearly fitting the velocity vs.
time plot. The obtained value of g, g=9.78 m/s’, was slightly below its known value,
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£=9.80 m/s’. (The reasons for this discrepancy have been discussed in the Exp.2 Lab
Report.) Then, we calculated the TE, and plotted it vs. time. Our results show that some
energy is lost during the motion, most likely because of frictional forces acting in the
Behr apparatus. Also, we found that the motion was affected by oscillations, which
propagated up to the measured values of the PE, the KE, and the TE. Based on these
observations, we believe that the experiment can be improved by: (1) Trying to keep the
apparatus stable. (2) Measuring also the x-component of the motion, and including it in
the formulas for the KE and the TE. (3) Reducing the apparatus friction, by using a
specific lubricant.

In the second part of the experiment, we compared the theoretical predictions for the PE
and the KE of the falling body (per unit mass), with the data fits. The absolute values of
the coefficients, in the quadratic fits, should be the same, for both PE/m and KE/m. Our
results show some discrepancy (we did not caleulate the error), which are probably due
to the systematic sources of error discussed above: oscillation of the apparatus, and
frictional forces. Our suggestions, summarized in the points (1)-(3) of the last paragraph,
should improve also this part of the experiment. However, the quadratic fits are excellent,
for both PE/m and KE/m, with coefficients of correlation very close to unity: this means
that casual errors have been reduced to a very high level of accuracy. Thus the systematic
errors are mainly responsible for the large uncertainties in the TE and its rate of change,
{as the oscillatory pattern of Fig.2 clearly shows) , and the discrepancies between the
coefficients of the PE/m and KE/m fits.
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