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Experiment 7 
Simple Harmonic Motion 

Reading: 
Bauer&Westfall Chapter 13 as needed (e.g. definitions of oscillation variables) 
 

Homework 8: turn in the first week of this experiment.   (No homework 9!) 

1. Define and explain briefly the meaning of the terms (a) restoring force, (b) free 
oscillation, (c) simple harmonic motion, (d) phase angle and (e) natural frequency.  

Using Figure 2 in the write-up below, 
      2. What is the amplitude of the oscillation at t  10 sec? at t 0 sec? 
      3.   Determine the period T, the angular frequency and the phase angle incos( t + ). 
      4.   Redraw the oscillations in Fig. 2 for phase angle = π/2. 
Extra Credit: 
5.  Show by using Hooke’s Law that a stationary mass m hanging from a spring with 

constant k (Fig. 1) stretches the spring to a new equilibrium position
k

mg
x 0 .  

6. Confirm by substitution that Eq. (7) indeed solves Eq. (6). 
7. Show that when β= 0 (no damping), Eq. (7) reduces to Eq. (3).  
 
1. Goals 
1. Understand the properties of an oscillating system governed by Hooke’s Law. 
2. Study the effects of friction on an oscillating system, which leads to damping. 
3. Use a non-linear least-squares fitting procedure to characterize an oscillator. 
4. Learn the basics of using an oscilloscope. 
5. Understand how to detect a power law relationship between variables. 
 
2. Theoretical Introduction 
2.1 Simple Harmonic Oscillation (SHO) Consider a system illustrated in the figure below. It 
consists of a mass m suspended from a spring with spring constant k. 
 

 
 

Fig. 1. A mass on a spring in the gravitational field of Earth 
 
Hooke’s law states that the force resisting the extension of the spring is proportional to the 
deviation of the spring from its equilibrium position.  That is, F = - k x, where x = 0 is defined 
by the equilibrium position of the spring.  If we gently add a mass to the spring, the spring will 
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stretch to a new (lower) equilibrium position, -xo = - mg/k, where g is the gravitational constant.  
At this position, the vertical restoring force of the spring balances the weight. In what follows, 
we will take the origin of x at this new equilibrium position.  In these final coordinates, at x=0 
the gravitational force is canceled by the force due the spring, so that we can ignore the constant 
gravitational force in this coordinate system, and consider only additional Hooke’s law forces 
beyond those required to cancel the weight. 
 
If the mass is now displaced from its equilibrium position, the same equation F = - kx still 
applies, where x is now that displacement. In other words, when such a displacement is made, a 
restoring force again acts to return the mass to its equilibrium position. Upon release, the mass 
moves toward the equilibrium position, but its inertia causes it to “overshoot” this point. The 
motion then continues through the equilibrium position and beyond until the restoring force 
eventually stops the mass and pulls it back toward the equilibrium position. The motion then 
repeats itself back and forth through the position of equilibrium. Newton’s second law states that 
any unbalanced force results in an acceleration of the mass, proportional to the force. If we apply 
Newton’s second law to the motion of a mass m that is subject to Hooke’s law, we get 

   ,
2

2

kx
dt

xd
m          (1) 

which can be written as 

,02
02

2

 x
dt

xd   where 
m

k
2

0      (2) 

 
We have studied the solution of this equation in Experiment 3. The simple pendulum underwent 

simple harmonic oscillation with angular frequency Lg / , where g is the gravitational 

constant and L is the effective length. We found that the solution for the simple pendulum was 
expressed in a sinusoidal form, Θ(t) = Θo sin(ω t).  Therefore, we anticipate that the solution for 
Eq. (2) should be similar.  However, we can’t guarantee synchronization of the phase with 
passage through equilibrium, so leave it as a free parameter: 

),cos()( 0   tAtx        (3) 

 
where A is the amplitude of oscillation, is a phase constant, and 0  is the angular frequency: 

.0 m

k
          (4) 

 
2.2 Damped Harmonic Oscillation (DHO) The amplitude of oscillation of the mass 
gradually decreases over time. This is due to the effect of friction or a drag (resistive) force. We 
want to see if we can understand its effects. For our example, the effect of friction can be 
represented as a force proportional to the velocity of the mass. Therefore, Eq. (1) can be 
modified to read  

dt

dx
kx

dt

xd
m 

2

2

       (5) 

 
where is a constant of proportionality, called the damping coefficient. The minus sign indicates 
that the damping force is always opposite to the direction of motion. Rearranging the above 
equation yields 
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 x
dt

dx

dt

xd  ,      (6) 

where 
m2

  .  The solution to this (second order differential) equation is no longer SHO. If 

is not too large, it is a modification of SHO. Also, the frequency of oscillation will be modified 
by the damping. The solution may be made plausible by an educated guess. We postulate that the 
oscillatory motion is still sinusoidal, but that the amplitude of oscillatory motion decreases as a 
function of time. So our trial solution is  

Atx )( ),cos(   te t       (7) 
 

where A is the amplitude, is the phase angle, and it turns out that 22
0    is the angular 

frequency of this system. See Appendix A for a more complete derivation. The coordinate )(tx , 
as a function of time t, is shown in Fig. 2. 
 

 
Fig. 2. Damped harmonic oscillator displacement as a function of time. The envelope decay 
function is  exp(-γt). The period T is related to ω by T = 2 π / ω , where ω  = 2 π f. 
  

Experimental Procedure 
 
3.1 The Dynamic Force Transducer In this experiment we will use a Dynamic Force 
Transducer (DFT), an electronic device that outputs a voltage proportional to a force applied to 
it. In Parts 7 and 8, we will hook the outputs of the DFT to the input terminal block of a 
LabView card and use LabView to monitor the applied force. If we use the DFT as the spring 
support, then the force exerted by the spring is measured. If we ignore the mass of the spring (a 
constant), this force is the same as that applied to the hanging mass and is by Hooke’s Law 
proportional to the displacement of the mass from equilibrium. Thus, by monitoring the force in 
the spring we are, in effect, monitoring the position of the mass.  The transducer produces a 
voltage proportional to force, with a scale controlled by the “sensitivity” knob, so the scale is 
unknown unless we calibrate it.  Further, we may use the “zero adjust” knob to zero the force 
readout for some one mass, but we use several different masses, and the zeroing may be inexact.  
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Thus, we may regard the DFT readout as giving not x, but B x + C, and we should add an 
arbitrary constant to any Kgraph equations used to fit DFT output. 
 
3.2 Inertial Mass. Throughout the lab, whenever measuring mass, be sure to include the 
support hook as well.  (We will ignore the mass of the spring.).  The mass in Eq. (1) is the 
whole mass that is accelerating—the inertial mass of F=ma.  That of course is the same mass as 
enters in Eq 4 for the angular frequency. 
 
4.  Checking DFT output vs. position. There are two knobs on the DFT, zero adjust (or 
“offset”) and sensitivity (of “gain”). Set the sensitivity knob nearly fully clockwise and do not 
touch it again during the experiment. Measure the hook mass, then attach the spring and hook to 
the DFT.  The output of the DFT goes to the digital oscilloscope (described Appendix B: read 
before class!). With the spring and hook mass at equilibrium, set up the scope as described in 
the appendix, and then adjust the offset of the DFT until the output reads zero volt(s) on the 
digital scope display. Note that zeroing the output at equilibrium is for convenience only, but the 
resulting voltage is your measurement for the hook alone, with no mass added.  
1. Measure the output (volts) for three more masses. The recommended order is 100g, 150g, 

and 200g (total of hook + added mass).  Assuming Hooke’s law to be true (and the DFT 
to behave as advertised), write down the general equation relating output to the mass. 

2. For these four measurements make a graph of V (volts) vs. m (grams). What function 
describes the dependence of V on m?  Is it roughly consistent with what you predicted?  
Do you think the DFT will do a good job of measuring position? 

 
5. Static Measurement of the Force Constant. In this part you check Hooke’s Law by 
measuring the displacement vs. mass using a metric ruler. 
1. Measure displacements for three (3) different masses. Assign uncertainties to the 

measured displacements; you can ignore the uncertainty of the masses.  Don’t forget to 
include the mass of the hook. 

2. Plot displacements (in units of cm) vs. mass (in units of grams) using K-graph.  
3.  Apply a least-squares fit procedure to obtain the spring constant k and its uncertainty. 

Hint: What are the units of k? of the slope? 
4.  Predict the oscillation frequency ωo for each of these masses.  Show the calculation in 

your notebook.  
 
6. Measurement of the Period of SHO. In this part of the experiment you will use the 
oscilloscope T cursors to measure (for 4 masse values) the angular frequency of oscillation ωo.  
1. Attach your first mass to the spring and set it into oscillation. Pick an appropriate point of 

reference and measure the time for several complete cycles of the oscillation. Record the 
time in your notebook.  What’s more accurate: a single cycle, or several? Why? 

2. Repeat step 1 for your second and third mass you used in Part 5. 
3. To obtain ωo, note that ωo = 2πf, where f is measured in cycles per second. 
4. Compare these ωo with those you predicted in Part 5. 
5. Now do one more mass value you haven’t done before. 
5.  Using K-graph, plot your data of ωo vs. m.  Now, using the RG note on Log Plots, make 

another plot with one or more axes logarithmic, which tests whether you observe the 
functional dependence predicted by Eq. (4). Hint: what shape, and what slope, would you 
observe if Eq.(4) were true?  
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7. Oscillating Spring: Displacement as a Function of Time. 
 
1. Attach the spring-hook-mass (150g total) combination to the DFT. With the help of the 

digital scope, adjust the DFT offset so the signal is symmetric about 0V. Set the spring-
mass system into oscillation, observe the pattern on the scope display and sketch it in 
your notebook. 

2. The output of the DFT is also connected to a data acquisition card on the PC. Open 
R:\exp7_ref\ ForceTransducer.vi. The following specifications are needed in order to 
collect the data successfully. Set device = 1; channels = 0; scan numbers = 1000, scan 
rate = 100. The scan numbers is just the number of data points; the scan rate is the 
number of points/second, so the number of seconds for which you will record data is just 
scan numbers/ scan rate.  If you need a longer data sample, raise the scan numbers; if 
you need finer sampling, raise the scan rate. Note: if you are using a flash drive, be 
careful to NOT remove the USB DAQ device along with your flash drive. 
 
Set the spring-mass system into oscillation and click the arrow button or press Ctrl R 
to begin collecting the data. (The scanning process will take 10 seconds.) When it is 
done, the program will ask you to save the data on the U drive. Caution: When exiting 
the program, it will ask you if you want to save the current setting. Choose NO. 

3. Use K-graph to retrieve the data file. Use “Any files *.*”, not “All Files”; don’t ask me 
why, but they aren’t equivalent.  When inputting your data to Kgraph, the following 
specifications are required: Delimiter = Tab; Number = 1, Line Skipped = 0, 
Options/Read Title (No check). Your file contains two columns: the first column is the 
time, the second column is the output voltage.  The data is big: don’t print data tables. 

4. Plot voltage vs. time and use the general curve-fit editor to perform a non-linear least 
squares fit procedure using the function given in Eq. (3). The corresponding Kgraph 
function is m1+m2*cos(m3*x + m4); m3 and m4 are in radians (m1 is the unknown 
voltage for x=0).  Explain why you need the m1 parameter, since it’s not in Eq (3). 
Notes:  
 This non-linear least-squares fit function will not converge unless your initial 

parameters (m1… m4) are realistic—especially for the angular frequency, for which 
you must find a way to get a good estimate. Show in your notebook how you 
estimated each parameter. How do the values compare to those output by K-graph? 

 The fit is subject to the ambiguities inherent in trig functions. The parameters of the 
fit should be reduced to standard form using trig identities.  You should wind up with 
a positive amplitude, a positive , and a phase angle in the range [-π, π].  A simple 
procedure is to first correct the sign of the amplitude (if necessary) by –cos(z) = 
cos(z+π), then correct the sign of  if necessary by cos(-z) = cos(z), and finally 
correct by cos(z) = cos(z ± 2Nπ), where N is any integer.  Show the steps in your 
notebook, and report the final values in your report or hand-written on your plot 
(which should show the original fit values and uncertainties) 
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8. The Effect of Friction 
In this part of the experiment, we will investigate the behavior of the spring oscillations under 
the effect of friction. 
1. Weigh the friction umbrella. Attach the friction umbrella to your spring-hook-mass 

(~150g) combination and once again observe the spring tension on the digital scope. 
Adjust the offset on the DFT if necessary. Set the system into oscillation and observe the 
oscillation pattern on your digital scope. You should observe a pattern similar to that in 
Fig. 2, which shows the sinusoidal oscillation modulation by the exponential damping 
factor. 

2. Measure the period T on the digital scope using the built in buttons. Calculate the angular 
frequency and the frequency f from T and record these values in your notebook. 

3. With the friction umbrella attached to your spring-mass system as in step 1, repeat steps 2 
and 3 of Part 7 (you may need to increase to 2000 data points). Fit the data to the function 
given by Eq. (7): m1+ m2*exp(-m3*x) * cos(m4*x + m5). Show how your m1… m5 
parameters are estimated.  How do these values compare to those given by K-graph?  As 
above, standardize the amplitude, angular frequency, and phase. Hint: if you’re stumped 
on m3, see 9.2 below. 

4. Repeat all of the steps 8.1 to 8.3 (measurements and fits) with a 100g mass total. 
 
9. Questions and Analysis 
1. In Part 5 we calculated the spring constant k from the slope of a plot of displacement vs. 

mass. Using the same data, give an alternative method for making a plot that yields the 
spring constant k directly from the slope. Hint: What kind of plot would have a slope that 
is the spring constant k? Alternative: substitute constants and arrange the fit constant so 
the fit parameter is k itself. 

2. In this question, you are asked to estimate the decay factor directly from a plot of voltage 
vs. time. Draw a smooth curve connecting the decay peaks on your plot in Part 8. The 
envelope decays as exp(-γt). When t = τ ≡ 1 / γ the amplitude x(t) has decreased by a 
factor of e/1 , or about 0.368 times the initial value A. Beginning from any point on the 
time-axis, determine τ, the length of time required for the amplitude x(t) to decrease by 

e/1 . Compare the resulting with that given by K-graph fit. Hint: If you didn’t cover a 
long enough time to reduce by .368, think about the decrease you’d get in a time τ/2.  

3. Does from Part 8 depend on the mass of the system? Calculate  supposing you had 
200g total, and compare it to the values for mass of 100g and 150g.  

4. Extra Credit: What is the % difference between your angular frequency of free 
oscillation ωo and your prediction in Part 5?  A more detailed theory suggests adding 
Mspring/3 to the suspended mass when calculating the frequency.  The spring weighs 
about 9 grams.  Does this fit your observed ωo better than just using the suspended mass?  
Is either prediction compatible with your measurement with uncertainties?  

5. Extra Credit: Compare the angular frequency of free oscillation ωo (found in Part 6) 
with the damped oscillator frequency ω. Again use data with m =150g.  Discuss your 
comparison of for the damped oscillator with ωo for free oscillator. Is the effect of the 
mass of the friction umbrella on ωo significant in this comparison? Are your results 
roughly consistent with Eq A5 for ω and the value of from your fit? Which contributes 
more: the mass of the umbrella, or the correction for  

6. Summarize your measurements in two tables, one for angular frequencies and ωo, and 
another (shorter) for estimates of γ.  The ω table should include the method, mass, value, 
prediction, and difference in %; base the predictions on the results from Part 5.  
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Appendix A: Solution of Damped Harmonic Oscillator 

 
The solution Eq. (7) for the damped harmonic oscillator in Eq. (6) can be found as follows. 
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 x
dt

dx

dt

xd  .      (A1) 

The general solution is 
 

tQAetx )( ,        (A2) 
where Q is a factor to be determined. Then 
 

)()( txQQAetx
dt
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Substitution of these two in (A1) yields 
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which has a solution of the form 
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For our case, which involves a weakly damped oscillation,  0  . Therefore, our solution 

(A4) becomes 

 iiQ  22
0  with 22

0    and mk /2
0    (A5) 

Our general solution Eq. (A2) now becomes 
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2
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1
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which is the solution Eq. (7).   
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Appendix B: Oscilloscope hints 
 
An oscilloscope (“scope”) (photo on last page of write-up) is a device to perform real-time 
visualization of voltages in an electric circuit. The screen of the scope shows the dependence of 
the measured voltage on time. If the real voltage changes, the picture on the screen changes as 
well. The time is shown on the x-axis, the voltage on the y-axis. Just as in KGraph, you can 
choose the best presentation of the graph by adjusting various scope controls. And just as with 
Kgraph presentation settings, no matter what scope settings you change, you have not 
changed anything about what happens in the circuit. If you know how many seconds (volts) 
correspond to one tick on the grid of the screen, you can read the period and the magnitude of the 
signal directly off the screen, or more accurately by using the cursor buttons. 
 
Setup of the oscilloscope 
Your scope can simultaneously measure two voltages, but in this lab you need only one input 
signal (supplied through channel A). The current settings for channel A (B) are shown in the 
upper part of the digital display to the right of the screen. By pressing the “A/B” button make 
sure that the shown settings correspond to channel A.  The only settings you should have to 
change on the scope are circled in the photo: those on the top row, the TB setting at the middle 
towards the left, and the row second from the bottom.  Leave alone the VAR knob: it should 
point to CAL (all the way to the right), and leave alone all the channel B settings. 
 
Connect a BNC cable from the transducer to the channel A input. Turn on the scope. Press 
"AC/DC" button until the digital display shows "DC".  ("DC" shows the real voltage; "AC" only 
shows variations about the average). Also, turn the “DIGITAL MEMORY” on. Choose the time 
base (the value of the 1 cm grid of the time scale) with the "TB s  μs" switch to be equal to "0.5 
s", and the voltage scale with the “A   V – mV” switch to be equal to "0.1 V". During the lab, 
you may want to adjust these settings to get the best presentation of the graph.  It’s also nice to 
push XMAGN 6 times or so until the display shows [---------] instead of [----      ] so the scope 
continuously collects new data.  The TB will now be 1.0s; re-adjust it to .4s . 
  
Press "GND". This, connects the scope input will be to “ground” (= 0V). Turn the Y-pos and X-
pos knobs to position the green line of the signal exactly in the middle of the screen. Do not 
touch the X- pos and Y-pos buttons for the rest of your measurements. This ensures the correct 
calibration of the picture offsets inside the scope. Then you will only need to worry about the 
voltage offset inside the force transducer, which you adjust with "ZERO" knob of the transducer. 
 
Press "GND" again. Now you will see the signal coming from the transducer. For nonzero mass, 
it will be vertically shifted with respect to the center of the screen. For static stretching of the 
spring, you will measure this displacement of the signal to find the dependence between the 
applied mass, elongation of the string and the voltage. During the study of oscillations, you will 
have to adjust the "ZERO" on the force transducer until the signal line is again in the middle. 
Thus you will make sure that the voltage shown corresponds to the displacement of the mass 
from the equilibrium point, and not from some other location of the system. 
 
Several other useful buttons: you may use the knobs to the left of the screen to adjust the focus 
and the brightness of the line. The button “LOCK” will allow you to lock (freeze) the image, 
which makes detailed measurements on the captured image convenient, as described below. 
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Voltage and Time Measurements with the Cursors 
 
Inspect the main screen.  If there is no writing at the bottom of the screen, press one of the blue 
"soft-keys below the screen to make the writing appear.  If there is some writing and one of the 
soft-keys has RETURN written above it, keep pressing it until it no longer says RETURN, to get 
back to the top menu. You should see: 
 
   CURSORS  SETTINGS  TEXT OFF 
 
Reading Voltages. We will use these soft-keys to move screen cursors so they correspond to the 
size of our signal and read off voltages from the screen.  Press the CURSORS soft-key.  Press 
MODE to set up the cursors we want.  Toggle the V-CURS and T-CURS soft-keys until the 
horizontal cursor lines are on and the vertical cursor lines are off.  Press RETURN. 
 
Press V-CTL to control the Voltage, cursors. The V cursors measure voltage, which is displayed 
as the vertical (y) axis on the screen.  They appear as horizontal lines on the screen, representing 
a constant voltage level.  Move the top one down to the level of your signal, and move the 
bottom one up to the reference value.  The REF line must be lower than the Δ line, so if you are 
measuring a negative voltage, you’ll have to add the sign. The value is displayed at the top of 
the screen.  For uncertainty estimation: use 2 clicks, or two line widths, or re-measure a few 
times.   
 
Frequency Measurement: Next, we wish to determine the time between 2 points. Time is 
measured as a horizontal distance on the screen.  The sine-wave signal is cyclic: it repeats itself.  
The time a sine-wave signal takes to make one cycle is called the period of the signal.  It has 
units of seconds.  The inverse of the period is the frequency (in Hz).  
 
To measure time we need the T-cursors (T stands for time).  Time is displayed as the x-axis on 
the screen, so a constant time is marked by the T cursor as a vertical line.  Return to the top-level 
menu using the RETURN soft-key.  Press MODE and toggle the T-CURSOR to on.  Hit 
RETURN, then hit T-CTL to move the time-cursors to the left and right.  The length of the cycle 
can be measured by positioning the T-cursors on equivalent points on the trace, for example, on 
two adjacent peaks or two adjacent valleys.  The period and the frequency can both be read off 
from the top of the screen,  but the frequency is “calculated” rather coarsely, so measure the 
period and calculate the frequency yourself by   f = 1/T ! 
 
 



PHY191 Experiment 7:  Simple Harmonic Motion                     7/30/2009 Page 10 

   

 
 
 

  

BNC Cable 

Soft Keys 

LCD Screen 


