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Experiment 8 
Rotational Motion 

 
 

Reading and Problems: 
Bauer&Westfall, Chapter 10 as needed 

Homework 10: turn in as part of your preparation for this experiment. 

1. Show that you can rewrite Eq. 6 as Eq. 12.  Hint: comment on whether any of your steps 
would require further justification, for example if you equate a value and its time average. 

2. Show that you can rewrite Eq. 9 as Eq. 13.  Hint: same as for HW 12.1 . 
3. Extra Credit: Substitute Eq. 9 into Eq. 8 to prove that Eq. 9 is a solution of Eq. 8. 
4. Extra Credit: Show that   is the instantaneous frequency in the middle of timing interval. 
5. Extra Credit: Why is Eq. 13 true only if the timing interval is short compared to the decay 

time? 
 
 

1. Goals 
 
1. To understand the rotational motion of a rigid body. 
2. To study different types of frictional losses in a rotating system. 
3. To explore the use of least-squares fitting procedures in analyzing a dynamical system. 

2. Theoretical Introduction 
 

For a rigid body that rotates about a fixed axis, Newton's second law of motion states that 
 

 I                            (1) 
 
where    is the magnitude of the total torque, I is the moment of inertia of the body and   is the 
angular acceleration, measured in radians/s2. Let us consider some applications of this equation. 

2.1 No frictional torque: Ideal case 

Our rigid body is a rotating disk.  Suppose there is no friction. Then the total torque, , is zero 
and Eq. 1 predicts that  = 0. By definition  = d/dt, so that one can readily solve for the 
angular velocity , 
 

.constant        (2) 

2.2 Constant frictional torque: realistic support of rotating disk 

Now suppose there is a constant frictional torque, f , acting on the disk (via the air bearings 

supporting it). Then from Eq.1 we have: 
 

dt

d
IIf


        (3) 
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dt

d
If


 .                        (4) 

 
Integrating this equation, we obtain: 
 




 dt
I

d f                      (5) 

t
I

f 0                                                                 (6) 

where 0  is the value of  at t = 0. The minus sign agrees with the notion that friction causes the 

angular velocity to decrease with time.  
 

2.3  Frictional torque proportional to magnetic braking 
 

Suppose now that  = - C , where C is a constant. Using Eq. 1 we now obtain: 
 

dt

d
IC


      (7) 

This can be rewritten as 
 




I

C

dt

d
.      (8) 

 
The solution of this differential equation is 
 

ω = ωo exp ( - γ t)              (9)

where ωo is the initial angular frequency and γ is the decay rate (in s-1).  We see that the angular 
frequency now decreases exponentially with time.  As we noted in the experiment on damped 
harmonic motion, 1/γ is the damping time constant, which is the time for the object to decay to 
1/e (0.368) of its initial value.  Comparing Eqs. (8) and (9), the damping rate is given by γ = C/I. 
 
 

3. Apparatus 
A cross-sectional view of the apparatus is shown on the next page. It consists of a stationary base 
on which is mounted a rotating platform supported by nearly frictionless air bearings. This 
rotating disk has alternating black and white bars on its circumference.  They allow us to observe 
how fast the disk is turning by watching the rate at which bars pass.  As the disk rotates, the bars 
sweep by a photo-diode detector whose output is amplified to yield standard (TTL) logic levels  
corresponding to the presence of a white (TRUE) or black (FALSE) bar. When you are aligned 
with a white bar, the red LED (light emitting diode) on the display is lit. The output is connected 
to the data acquisition card attached to your PC. Once in the computer, these signals will be 
analyzed by various programs written in the LabVIEW language. 
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      Rotating platform  
 
   Air bearing 
 
   Stationary base 
 
 
The theoretical relationships discussed at the beginning were derived in terms of the 
instantaneous angular velocity, , but the apparatus used in this lab displays   on its readout 
LCD screen, and produces an output voltage proportional to  , which is defined as 

  = n / T              (10) 

Here n is the number of bars which pass during a timing interval of size T, and  is the average 

rate (or frequency)at which the white bars pass the detector. The brackets indicate averaging 
over the time interval T. 

However, the angular velocity  and   are related by the equation  

 = 2  /N,             (11) 

where N is the number of black bars on the circumference of the rotating platform (and thus 
represents the number of bars in a single revolution of 2radians). Knowing N allows us to 
calibrate the device readout and change   into As in the free fall experiment, we can’t 

measure instantaneous quantities such as ordirectly, but only their averages or   over 
some time interval. Still, we can use the device readout more directly, and by the linear 
relationship (11) we can rewrite (6) as 




2
N

o  α t.     (12) 

 
If the acceleration is constant then velocity changes linearly with time and, as in the gravitational 
free fall experiment, the average velocity in a timing interval is also the instantaneous velocity at 
the center of the interval.  
 
If the frictional torque and hence the angular acceleration depend linearly on the angular 
frequency then it can be shown that  is the instantaneous frequency in the middle of the 
timing interval, but only if the timing interval is short compared to the decay time I/C. Thus, 
measuring the time dependence of   yields the time dependence of .   We can use (11) again 
to rewrite (9) as 

  = 0  exp ( - γ t).      (13)  
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4. Questions for preliminary discussion 

1. How you will assess the uncertainty of N?  (You may change your mind after working with 
the apparatus.) 
2. How you will quantitatively determine the uncertainty of  ? 

Experimental Procedures 

5. Determination of N 

The objective here is to determine N, the number of black bars on the circumference of the disk.  
Note that N is an integer. 

0.   Record your table number! 

1. Make sure the air is flowing through the bearing before you spin the aluminum disk! 
Failure to do so could result in irreversible damage to the apparatus. Also, be sure the red 
magnet is far away from the disk, and has the iron “keeper” across its poles. 

2. A computer program is provided that counts the number of black bars which pass by the 
photocell. Open the program in the LabVIEW:  

      R:\exp8_ref\counter.llb\simplecounter.vi Set device=1; counter=0. 

Clicking the Arrow button on its menu resets the counter and starts the count. 

3. Position the platform so the little red light is on and reset the counter to zero. Carefully mark 
this starting angular position of the platform. Now run the program, and smoothly rotate the 
platform through exactly 5 (or 10) revolutions, being sure to stop at a point where the red 
light is on.  Do not let the platform reverse direction: edges count in either direction! Get 
the edges counted from the program. If M is the number of revolutions and Nc the total 
number of counts then N = Nc / M .  Explain your estimate for the uncertainty in N. 

6. Undamped Rotation 

The objective of this part of the lab is to determine if there is a significant frictional torque in this 
apparatus. 

1. Open a program in the directory R:exp8_ref\rotationalvelocity.vi. Set Device=1, Total 
Time=100 sec.  The program counts edges passing during 1 second periods. 

2. Give the disk enough angular momentum so that 0  reads between 250 Hz and 300 Hz on 

the LCD display of the apparatus. Run the program by clicking the arrow.  

3. Exit the program. Choose No to the question “Save changes to rotationalvelocity-.vi?”  

4. Use Kgraph to open the data file as done in Exp 7. The data file contains Average Time and 
Frequency. Make a plot of   vs. time. Estimate the uncertainty for   (and explain how 
you got it!) and show error bars on the plot. 

5. Fit the data to Equation (12) to determine values and uncertainties for 0  and .   

6. Extra Credit: Check your uncertainty estimate by examining the residuals to the fit.  What 
uncertainty would have given about 2/3 of the points within the error bars?  Hint: You can 
make a data column with the residuals after you have done a general curve fit by Curve Fit | 
(select your fit name) | View | Copy Residuals to Data Window. 
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7. Extra Credit: Predict from Eq (12) the behavior at long times.  Then let the wheel run a long 
time and see whether Eq(12) correctly describes the long-time behavior. 

8. Extra Credit: See whether Eq (13) does a better job of describing the data from § 6.4 . 

7. Damped Rotation 

The objective of this part of the lab is to determine if a magnetic brake causes a frictional torque 
that depends linearly on .  
 
1. Remove the “keeper” bar from the poles of the red magnet and place the magnet near the air 

bearing and underneath the top rotating aluminum disk. Use the same program as you did in 
part 6, set Total Time=100 sec. Spin the disk so that its initial   is between 250 and 300 
Hz, then run the program. When done, take the magnet off the apparatus and replace the 
“keeper” across its pole faces. 

2. Make plots of   vs. time. Fit the data to equation (13) and determine the best fit values and 

uncertainties for parameters 0 , γ. 

3. Now use another method to estimate the same parameters.  Convert Eq. (13) to a linear form 
by taking the natural logarithm (ln) of both sides (see the Reference Guide, and Taylor §8.6).  
Calculate ln  from your data, and make plots of ln  vs. t . Predict whether a fit will 
give you the same parameters as in part 7.2 .  Now fit your data using the general fit editor 
and find parameters ln  and   and their uncertainties.   

4. Are the values from 7.3 compatible with the values you found in §7.2?  Summarize your 
comparison in a table.  If you have trouble finding parameter uncertainties from 7.3, just use 
the uncertainties from 7.2 .   

5. Extra Credit: Why do the values you obtain in 7.3 differ from those in section 7.2?  After 
all, it’s the same data, and both are claimed to be best fits!  Hint: see Taylor §8.6 . 

6. Extra Credit: From your 7.3 results, does damping becomes weaker, or stronger, at long 
times?  Explain how you reach this conclusion. 

7. Extra Credit: The differential equation with both linear and constant torques is given by ω’ 
= - a ω – b, with b = - τf / I and a = γ (from Eq 6 and 9).  The solution to this equation is 
given by ω = - (b/a) + (ωo + b/a) Exp(- a t).  Does this fit your data of §7.1 better than Eq 
(13)?  Do the value of ωo and γ match? Does the value of b match the value from §6.5? 
Which of them would you expect to match? 

8. Questions and Analysis 

1. From your data in Part 6 deduce if there is a significant frictional torque. If so, do your data 
imply that this torque is constant? In other words, is Eq. (6) obeyed by your data? Be sure to 
show clearly how you draw your conclusions. 

2. In Part 7.2, how well does Eq. (13) describe your data? Look for systematic deviations in 
your experimental data records.  If you find any, what might be causing this? 

3. Extra Credit: What is the physical mechanism by which the magnet causes the wheel to 
slow down?  Why, in particular, causes a torque proportional to ω? You can see that the 
magnet has no tendency to stick to the disk when it is stationary: the aluminum disk is non-
magnetic.  Hint: look for information on “eddy currents” or “magnetic braking”. 

 


