PHY215: Thermodyamics Study Guide

Be able to explain:

- 1. When is thermodynamics a useful tool?
- 2. The "0th" law of thermodynamics.
- 3. The concepts of equilibrium, internal energy, work, temperature, heat, entropy, volume and pressure. Which of these are "state functions", which are not?
- 4. Mechanisms of heat transfer: conduction, convection, and radiation.
- 5. Equipartition and Boltzmann's constant and the relationship to the ideal gas law.
- 6. The ideal gas law.
- 7. Reversible and irreversible processes.
- 8. The 1st law of thermodynamics: dQ=dU+dW=dU+pdV
- 9. The Carnot cycle.
- 10. Efficiency of a heat engine; performance factor of a refrigerator.
- 11. The Clausius Theorem: $\Sigma(\Delta Q_i/T_i) \le 0$.
- 12. The 2^{nd} law of thermodynamics: dQ = TdS, $\Delta S_{universe} > 0$.
- 13. What does statistical mean in "statistical mechanics".
- 14. Entropy and its relation to microstates vs. macrostates, disorder, information, and to the reversibility of a process.
- 15. Adiabatic free expansion, and why this results in an entropy increase despite the absence of heat flow.
- 16. Identify the contributions of Joule, Carnot, Kelvin, Clausius, Maxwell, and Boltzmann.

Be able to calculate:

- 1. Use specific heats and the (latent) heat of transformation during a phase change to relate energy transfer to change in temperature and the flow of heat.
- 2. Calculate heat flow by conduction and radiation.
- 3. Use equipartition to estimate the kinetic energy of an atom in a gas.
- 4. Apply the ideal gas law to understand isothermal and adiabatic processes.
- 5. Calculate the work done, heat transferred, and internal energy and entropy changes during a process specified in the (P,V) plane.
- 6. Compute the work done and efficiency of a heat engine cycle.
- 7. Compute the performance factor of a refrigeration cycle.
- 8. The entropy change of a system at constant temperature given the heat flow into that system.
- 9. The entropy of an ideal gas as a function of T, V, and n.
- 10. Dimensional analysis: what typical length and energy scales are associated with the microscopic physics of everyday life (e.g. gases at STP).