
Many-Electron Atoms

Thornton and Rex, Ch. 8



In principle, can now solve Sch. Eqn for any
atom.

In practice, ->  Complicated!

Goal--

To explain properties of elements from
principles of quantum theory
(without exact solutions)



• Elements distinguished by nuclear
charge Z (= number of electrons)

• To first approx., each electron moves in
electric field of nucleus + remaining
electrons:

electron state :    (n, l, ml, ms)

• Principles for filling electron states:

1) Always fill lowest energy state first.

2) No two electrons can have same
quantum numbers (n, l, ml, ms).

Pauli Exclusion Principle

No two electrons can occupy the same
quantum state.

shell subshell

n labels energy, but no simple formula.
l subshells no longer completely degenerate.



Building up atomic structure of atoms

n l ml ms

Hydrogen 1 0 0 ±1/2

Helium 1 0 0 +1/2
1 0 0 -1/2

Helium has a closed shell.

For Lithium, now add n=2 electron,
but l =0 or l =1?

Smaller l always has lower energy.

Lithium 1 0 0 +1/2
1 0 0 -1/2
2 0 0 ±1/2



n l ml ms

Hydrogen 1 0 0 +1/2
Helium 1 0 0 -1/2
Lithium 2 0 0 +1/2
Beryllium 2 0 0 -1/2
Boron 2 1 -1 +1/2
Carbon 2 1 0 +1/2
Nitrogen 2 1 +1 +1/2
Oxygen 2 1 -1 -1/2
Flourine 2 1 0 -1/2
Neon 2 1 +1 -1/2
Sodium 3 0 0 +1/2
Magnesium 3 0 0 -1/2
Aluminum 3 1 -1 +1/2
Silicon 3 1 0 +1/2
Phosporus 3 1 +1 +1/2
Sulfur 3 1 -1 -1/2
Chlorine 3 1 0 -1/2
Argon 3 1 +1 -1/2
Potassium 4 0 0 +1/2
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Chemical properties of elements

Electrons in outermost, largest n orbits
are most weakly bound.  They determine
the chemical properties of the elements.
Elements with similar electron structure
have similar properties.

• Inert or Noble Gases
Closed p subshell (s for He).
He (1s2), Ne (2s22p6), Ar (3s23p6)

• Alkalis
Have single electron electron outside
closed shell.
Li (2s1), Na (3s1), K (4s1)

• Halogens
Are one electron short of a closed shell.
F (2s22p5), Cl (3s23p5)



Total Angular Momentum
Consider a 1-electron atom (or with just

1 electron outside closed shell).

It has Orbital Angular momentum L and
     Spin Angular momentum S.

These can be combined to give
Total Angular momentum  J = L + S .

J is quantized with

J =  √j(j+1)   h

and

Jz = mj h

where j = l ± s

or       j = l ± 1/2  (since s = 1/2)



j will be half-integral (1/2, 3/2, 5/2, ...)
mj will also be half-integral, ranging from
-j to j.

Example:  l =1, s=1/2

ml = (1,0,-1)       ms = (-1/2,+1/2)

3•2 = 6 states

Can combine into

j = 3/2 = 1 + 1/2
mj  = (-3/2,-1/2,+1/2,+3/2)    (4 states)

or

j = 1/2 = 1 - 1/2
mj  = (-1/2,+1/2)    (2 states)

Total number of j-states is      6 = 4 + 2.



Spectroscopic notation

nLj

Examples:     2S1/2      3P3/2      etc.

Principle 
Quantum
Number

Orbital Angular 
Momentum Letter

Total Angular 
Momentum Number



Spin-Orbit Coupling
• Recall, coupling of spin to a magnetic

field shifts the energy  (VB = -ms• B).

• Motion of electron produces an
“internal” magnetic field.

So there is an additional contribution to
the energy:

        VSL = -ms• Bint

        VSL µ  S • L

Proportional
to -S

Proportional
to L



This is the Spin-Orbit Coupling:

        VSL µ  S • L

Now states with definite energy do not
have unique L and S quantum numbers
(ml, ms).  We must use J quantum
numbers (j, mj).

States with j = l - 1/2 have slightly less
energy than states with j = l + 1/2 .

2P3/2
2P

2P1/2

(States with different mj are still
degenerate for each j.)



Selection Rules

Allowed transitions:

• lifetimes   t ~ 10-9 sec

Dn = anything,    Dl = ±1,

Dj = 0, ±1,        Dmj = 0, ±1

Forbidden transitions:

• lifetimes much longer

Ex. 2s Æ 1s, t ~ 1/7 sec

n l j mj n’ l‘ j’ mj’
emitted
photon



Many-Electron Atoms
A careful analysis involving L and S in
multi-electron atoms is very complicated.

Hund’s Rules

(Empirical rules for filling a subshell,
while minimizing the energy)

1) The total Spin should be maximized
(without violating Pauli Exclusion
Principle).

2) Without violating Rule 1, the Orbital
Angular momentum should also be
maximized.



Handwaving explanation:

Electrons repel each other, so we want
them as far from each other as possible.

1) If spins of two electrons are aligned
(for maximum S), then Pauli Exclusion
Principle says they must have
different L orbits.  They will tend to
be farther apart.

2) If the L orbits are aligned (although
with different magnitudes), then the
electrons will travel around the
nucleus in the same direction, so they
don’t pass each other as often.



Example:

A d subshell (l =2) can contain 10 electrons.

ms=+1/2
ml =+2

 -1/2

 +1/2
ml =+1

 -1/2

 +1/2
ml =0

 -1/2

 +1/2
ml =-1

 -1/2

 +1/2
ml =-2

 -1/2



Example:

A d subshell (l =2) can contain 10 electrons.

ms=+1/2
ml =+2

 -1/2

 +1/2
ml =+1

 -1/2

 +1/2
ml =0

 -1/2

 +1/2
ml =-1

 -1/2

 +1/2
ml =-2

 -1/2
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Many-Electron Atoms
For many-electron atoms there is now

orbit-orbit and spin-spin interactions,
in addition to spin-orbit interactions.

Consider simplest case of 2 electrons
with L1, S1 and L2, S2.

Only “good” quantum number is
associated with total angular
momentum

J = L1+L2+S1+S2 .

(By “good”, I mean states with definite
energy have definite j and mj. )

How can we describe atom to best
understand energy levels?



LS, or Russell-Saunders, Coupling
For most atoms the spin-orbit coupling is
relatively weak.  Then it makes sense to
add the angular momentum in steps:

First,  L = L1 + L2
S = S1 + S2

Then   J = L + S

For 2 electrons the Total Spin Quantum
Number S is = 0 (spins anti-parallel)
                or = 1  (spins parallel).

The Total Orbital Angular Momentum
Quantum Number L is an integer in the
range between |l1 - l2| and  |l1 + l2|.

The Total Angular Momentum
Quantum Number J is an integer in the
range between |L - S| and  |L + S|.



Note that for S=0, there is 1 value of
J, given by J=L.  This state is called a
Singlet.

For S=1, there are 3 values of J, given by
J=L-1, J=L, J=L+1. These states are
called a  Triplet.

In general, the multiplicity of the states
is given by (2S+1).

The Spectroscopic notation is

n(2S+1)LJ



Example:

2 electrons, one in 4p, other in 4d.

I.e., n=4,  l1 =1, s1=1/2
      l2 =2, s2=1/2

Possible values of S:

S=0   or    S=1

Possible values of L:

L=1, 2, or 3

Possible values of J:

for singlet (S=0):   J=L

for triplet (S=1):   J=L-1
or J=L
or J=L+1



Use Hund’s rules to order the energies.

4p4d



Use Hund’s rules to order the energies.

4p4d

S=0

S=1

1P

1D

1F

3P

3D

3F

1P1

1D2

1F3

3P23P13P0

3D33D23D1

3F43F33F2

Maximize S

Maximize L
Minimize J

(Spin-Orbit ~S•L)



Example:

Helium  1s2

l1 =0, s1=1/2
l2 =0, s2=1/2

Possible values of S=0,1

Possible values of L=0

Possible values of J=0,1

States:  1S0,    
3S1

not allowed by Pauli Exclusion
(requires both electrons all same QN’s)

If one electron is excited to 2s, so the
state is 1s2s, then

both 1S0, 
3S1 are allowed.



jj Coupling
For high-Z elements the spin-orbit
coupling is large for each electron.
Now add the angular momentum:

First, J1 = L1 + S1
J2 = L2 + S2

Then   J = J1 + J2





Anomalous Zeeman Effect

Recall, energy shift in external magnetic
field:

VB = -m• B

The magnetic moment gets both orbital
and spin contributions:

              -e
m = mL+ mS =        [ L + 2 S ]
                  2m

If S=0, this is simple.  It is just the
Normal Zeeman effect.  Energy levels
split according to ml values:

VB = ml mB B

But. . . . . . . most atoms are not “Normal”.



If both S and L are nonzero, the
spin-orbit coupling requires us to use
J-states.  Projecting m onto J gives

        e
VB =          g  J • B
       2m

    = mB g mJ B

where the projection factor
(called the Lande g factor) is

   J(J+1) + S(S+1) - L(L+1)
g = 1 +

   2J(J+1)

This is the Anomalous Zeeman Effect.


