
Adiabatic Expansion (DQ = 0)
Occurs if:
•   change is made sufficiently quickly
•   and/or with good thermal isolation.

Governing formula:

PV
g
  = constant

where g = CP/CV

Because PV/T is constant (ideal gas):

        V
g-1

 T = constant      (for adiabatic)
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Proof of PV
g
=constant

        (for adiabatic process)

1) Adiabatic:  dQ = 0 = dU + dW
                              = dU + PdV

2)  U only depends on T:

dU = n CV dT  (derived for constant
    volume, but true in general)

3) Ideal gas:   T = PV/(nR)
 dT = [(dP)V + P(dV)]/(nR)

Plug into 2): dU = (CV/R)[VdP + PdV]

Plug into 1): 0 = (CV/R)[VdP + PdV] + PdV
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Rearrange:

 (dP/P) = - (CV+R)/CV (dV/V)
       = - g (dV/V)

where g = (CV+R)/CV = CP/CV

Integrate both sides:

ln(P) = - g ln(V) + constant

or

ln(PV
g
) = constant

or

PV
g
 = constant

QED



Irreversible Processes
Examples:

• Block sliding on table comes to rest
due to friction:  KE converted to heat.

• Heat flows from hot object to cold
object.

• Air flows into an evacuated chamber.

Reverse process allowed by energy
conservation, yet it does not occur.

             arrow of time

Why?

2nd Law of Thermodynamics  (entropy)



Heat Engines
Heat engine: a cyclic device designed to
convert heat into work.

2nd Law of TD (Kelvin form):

It is impossible for a cyclic process to
remove thermal energy from a system at a
single temperature and convert it to
mechanical work without changing the
system or surroundings in some other way.

Hot Reservoir, TH

Cold Reservoir, TC

QH

QC

Work, W



For a cyclic engine DU = 0,

So work done is equal to
heat in minus heat out:

W = QH - QC

Define the Efficiency of the engine:

 e = W/QH = (QH-QC)/QH = 1 - QC/QH

Corollary of the 2nd Law of TD:

It is impossible to make a heat engine
whose efficiency is 100%.



Refrigerators
Refrigerator: a cyclic device which uses
work to transfer heat from a cold
reservoir to hot reservoir.

2nd Law of TD (Clausius form):

It is impossible for a cyclic process to
have no other effect than to transfer
thermal energy from a cold object to a hot
object.

Hot Reservoir, TH

Cold Reservoir, TC

QH

QC

Work, W



A measure of refrigerator performance is
the ratio:

K = QC / W

“Coefficient of performance”
(The larger the better.)

Corollary of the 2nd Law of TD:

It is impossible for the coefficient of
performance to be infinite.



Equivalence of Kelvin and
Clausius Statements

For example:

You could combine an ordinary
refrigerator with a perfect engine
(impossible)...

to obtain a perfect refrigerator (also
impossible).
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The Carnot Engine
2nd Law of TD says:
  100% efficient Heat Engine is impossible.

What is the maximum possible efficiency?

No engine working between 2 heat
reservoirs can be more efficient than an
ideal engine acting in a Carnot cycle.
(Sadi Carnot, 1824)

Properties of the Carnot cycle:

1. It is reversible: no friction or other
dissipative forces.

2. Heat conduction only occurs
isothermally at the temperatures of
the two reservoirs.



Derivation of Carnot Efficiency

e = 1 - TC/TH
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1-2:  Isothermal (Qin at TH)
2-3:  Adiabatic expansion
3-4:  Isothermal (Qout at TC)
4-1:  Adiabatic compression



The Stirling Engine
Invented by Robert Stirling in 1816.
Its operating cycle is:

The two temperature-changing steps are
performed at constant volume; A heat
transfer occurs at these steps also.

              eStirling  <  eCarnot
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Entropy
Consider a reversible process for an ideal
gas:

dQ = dU + dW = n CV dT + P dV

      = n CV dT + n R T (dV/V)

We cannot write a general integral of this,
because dW (and therefore dQ) depends
on the functional form of T(V) (i.e. the
path).  However, if we divide by T:

dQ/T = n CV (dT/T) + n R (dV/V)

is integrable independent of path.

This suggests a new state function,
Entropy, defined by:

 dQ
 DS = Sf - Si =  ∫                  T

(Valid for any system)
i

f



In general, the process may be too
complicated to do the integral
(particularly if irreversible process):

However, because entropy is a state
function, we can choose any convenient
path between i and f to integrate.

For an ideal gas:

     DS = n CV ln(Tf/Ti) + n R ln(Vf/Vi)

This only depends on the initial state
(Vi,Ti) and final state (Vf,Tf), but not the
path.
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Isothermal Expansion:  Tf=Ti, Vf>Vi

The amount of heat which leaves the
reservoir and enters the gas is

Q = n R T ln(Vf/Vi).

The entropy change of the gas is

DSgas = + Q/T = n R ln(Vf/Vi).

The entropy change of the reservoir is

DSreservoir = - Q/T.

The net entropy change is

DSuniverse = DSgas + DSreservoir = 0.

This illustrates a general result:

In a reversible process, the entropy
change of the universe (system +
surroundings) is zero.



Adiabatic Free Expansion
of an Ideal Gas

Two containers connected by stopcock.
They are thermally insulated so no heat
can flow in or out.

Initial: One container is evacuated. Gas is
in volume Vi at temperature Ti.

Final:  Stopcock opened, gas rushes into
second chamber.  Gas does no work
(nothing to push against) and there is
no heat transfer.  So internal energy
does not change.  Final volume Vf>Vi at
temperature Tf=Ti.



Because there is no heat transfer, you
might think DS = 0.  WRONG!  This is an
irreversible process.  We can’t integrate

dQ
     ∫           .  T

But entropy is a state function, and we do
know the initial and final conditions for
the Free Expansion.  They are exactly the
same as for an Isothermal Expansion.  So

DSgas = n R ln(Vf/Vi).

just as for an isothermal expansion.
However, since it is thermally isolated
from its surroundings,
DSsurround = 0
and
DSuniverse = DSgas + DSsurround = n R ln(Vf/Vi)

    > 0.

In an irreversible process, the entropy of
the universe increases.



Entropy and Heat Engines
For a reversible cycle:

dQ
S =  ∫

T
= 0∫

T
This implies that dQ cannot be strictly 
positive.  There must also be heat released 
in the cycle. 

Carnot cycle:  (Qin/TH) + (-Qout/TC) = 0.

2nd Law of TD (Entropy form):

Suniverse ≥ 0.

(greater-than sign for irreversible 
processes, and equals sign for reversible
processes)



Entropy and Probability
(A statistical view)

Entropy ~ a measure of the disorder of a
       system.

A state of high order = low probability
A state of  low  order = high probability

In an irreversible process, the
universe moves from a state of low
probability to a state of higher
probability.

We will illustrate the concepts by
considering the free expansion of a gas
from volume Vi to volume Vf.

The gas always expands to fill the
available space.  It never spontaneously
compresses itself back into the original
volume.



First, two definitions:

Microstate: a description of a system that
specifies the properties (position
and/or momentum, etc.) of each
individual particle.

Macrostate: a more generalized
description of the system; it can be in
terms of macroscopic quantities, such
as P and V, or it can be in terms of the
number of particles whose properties
fall within a given range.

In general, each macrostate contains a
large number of microstates.

An example: Imagine a gas consisting of
just 2 molecules.  We want to consider
whether the molecules are in the left or
right half of the container.



                       L         R

There are 3 macrostates: both molecules
on the left, both on the right, and one
on each side.

There are 4 microstates:
LL, RR, LR, RL.

How about 3 molecules?  Now we have:
LLL, (LLR, LRL, RLL), (LRR, RLR, RRL), RRR

(all L)   (2 L, 1 R)             (2 R, 1 L)     (all R)

i.e. 8 microstates, 4 macrostates

How about 4 molecules?  Now there are
16 microstates and 5 macrostates

(all L) (3L, 1R) (2L, 2R)  (1L, 3R) (all R)

   1            4           6             4           1
               number of microstates

1
2



In general:       
N W M

1   1                          1       2 21   1                          1       2 2
1    2   1                        2       4 3

1    3    3    1                    3       8 4
1    4     6    4   1                 4      16 5

1   5   10   10   5   1               5     32 6
1   6   15 20  15   6   1            6     64 7

1  7   21  35   35  21   7  1          7    128 8
1  8  28  56  70  56  28  8  1        8    256 9

2N N+1

This table was generated using the formula This table was generated using the formula 
for # of permutations for picking n items 
from N total:

W =                        i e  W =            = 15N! 6!WN,n =                        i.e. W6,2 =            = 15N!
n! (N-n)!

6!
2! 4!

“multiplicity”mu t p c ty



Fundamental Assumption of Statistical
Mechanics:  All microstates are equally
probable.

Thus, we can calculate the likelihood of
finding a given arrangement of molecules
in the container.

E.g. for 10 molecules:



Conclusion:  Events such as the 
spontaneous compression of a gas (or spontaneous compression of a gas (or 
spontaneous conduction of heat from a 
cold body to a hot body) are not 
impossible, but they are so improbable 
that they never occurthat they never occur.

“Improbable”, quantitatively:

For large N, σ/μ → 1/√N

For N ~ NA,    σ/μ → 1.3 x 10-12

~ 70% of time within 10-10 % of expected

Probability of < 10-99 to find 
more than 2 7 x 10-9 % from expected!more than 2.7 x 10 % from expected!



We can relate the # of microstates W of 
 s st  t  its t S b  sid ia system to its entropy S by considering

the probability of a gas to spontaneously 
compress itself into a smaller volume.

If the original volume is Vi, then the 
probability of finding N molecules in a 
smaller volume Vf issmaller volume Vf is

Probability  =  Wf/Wi =  (Vf/Vi)N

ln(W /W ) = N ln(V /V ) = n N ln(V /V )   (1) ln(Wf/Wi) = N ln(Vf/Vi) = n NA ln(Vf/Vi)   (1) 

We have seen for a free expansion that

S = n R ln(V /V ) S = n R ln(Vf/Vi) ,

So, using (1) for ln(Vf/Vi),

S  (R/N ) ln(W /W )   k ln(W /W ) S = (R/NA) ln(Wf/Wi)  = kB ln(Wf/Wi) 

or

S S  k l (W ) k l (W ) Sf - Si = k ln(Wf) - k ln(Wi) 



Thus, we arrive at an equation, first
deduced by Ludwig Boltzmann, relating the
entropy of a system to the number of
microstates:

S = k ln(W)

He was so pleased with this relation that
he asked for it to be engraved on his
tombstone.



Otto Cycle

Images:  http://www.grc.nasa.gov & http://en.wikipedia.org
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Ideal Gas Otto Cycle

A

B

C

D

Image:  http://www.grc.nasa.gov

W = QH −QC

n moles of an ideal gas

QH = nCV (TC − TB) QC = nCV (TD − TA)

η =
W

QH

= 1− QH

QC

= 1− TD − TA

TC − TB

VB = VC & VA = VD TBV γ−1
B = TAV γ−1

A & TCV γ−1
B = TDV γ−1

A

η = 1−
�

VB

VA

�γ−1

= 1− TA

TB
= 1− TD

TC

∴ TD − TA

TC − TB
=

�
VB

VA

�γ−1

=
TA

TB
=

TD

TC Hottest: TC

Coldest: TA<ηCarnot!
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Details of Otto Cycle efficiency calculation: 

Define the compression ratio r = VB / VA 

and   x = r γ-1  

The boxed expressions (from adiabatic expansion) can 
be rewritten (dividing by VA

 γ-1) in terms of x as 

    x TB  = TA   and     x TC =TD   (1)  

which leads to     x =    TA/TB  =   TD/Tc   

Now consider y = (TD – TA ) / (TC – TB )    (from η = 1 – y)   

             y = (xTC - xTB ) / (TC – TB )  = x       ( use (1) ) 

Thus:   

 η = 1–y  = 1–x  =  1 – TA/TB  =   1 – TD/TC 

The last expression is easy to compare with the 
Carnot efficiency using only the two extreme 
temperatures (A coldest, C hottest): 

       ηc = 1 – TA/TC      

So     η < ηc             since TD > TA 
 




