
The Physics 431 Final Exam

Wed, DECEMBER 15, 2010

12:45 -- 2:45 p.m. 

BPS 1320 (not 1308!!!)

The exam includes topics covered throughout the semester

Greater emphasis will be placed on the 2nd half of the course

The exam consists of problems totaling 250 pts. 

Show all work on exam pages — circle your answers

Grades will be posted at BPS 4238 by 12 pm Friday, December 17.  Remember 
your “pass code” from the final exam.

• Calculators, 2 letter-size sheets “handwritten notes” OK

• Graded lab reports ================ OK

• Books, old HW, laptops NO

Check “Midterm Review Slides” for topics covered in Midterm I.
Review “Final Exam Topics” posted/handed out in class.



Telescope

• Object is at infinity so image is at f
• Measure angular magnification
• Length of telescope light path is sum of 

focal lengths of objective and eyepiece
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The exit pupil is the image of the aperture stop (AS).
Define CA0 = entrance pupil clear aperture

CAe= exit pupil clear aperture
From the diagram, it is clear that 
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A Magnifying Lens



Microscope

• x‘ is the tube length:
standard x’ ranging160mm to 250mm

• Magnification is product of lateral 
magnification of objective and angular 
magnification of eyepiece

• Note: Image is viewed at infinity
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Eye (Hecht 5.7.1 and Notes)

Topics/Keywords: 
Eye model, Visual Acuity, Cones/Rods
accomodation, eyeglasses, 
nearsightedness/myopia, 
farsightedness/hyperopia



Human Eye – Gullstrand Model



Retina – Cones and Rods

Current understanding is that the 6 to 7 million cones can be 
divided into "red" cones (64%), "green" cones (32%), and 
"blue" cones (2%) based on measured response curves.



Numerical Aperture

Paraxial approximation
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We will learn that
the spatial resolution limit due to diffraction ≈ 1.22×f λ /D=0.61×λ/NA [Rayleigh Criterion].



The Chief Ray

For an off-axis object, the chief ray (CR) is the ray that passes 
through the center of the aperture stop. Rays that pass through 
the edge of the aperture stop are marginal rays (MR).



Aperture Stop and Entrance & Exit Pupil

The entrance pupil of a system is the image of the aperture stop as seen from an axial 
point on the object through those elements preceding the stop. (Hecht p. 171)
The exit pupil of a system is the image of the aperture stop as seen from an axial point 
on the image plane through the interposed lenses, if there is any. (Hecht p. 172)

The aperture stop (AS) is defined to be the stop or lens ring, which physically limits 
the solid angle of rays passing through the system from an on-axis object point. The 
aperture stop limits the brightness of an image.

Aperture Stop (AS)



Monochromatic plane waves

Plane waves have straight wave fronts
– As opposed to spherical waves, etc.
– Suppose



– E0 still contains: amplitude, polarization, phase
– Direction of propagation given by wavevector:

– Can also define 

– Plane wave propagating in z-direction
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Key words: energy, momentum, wavelength, frequency, phase, amplitude…



Poynting vector & Intensity of Light
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•Poynting vector describes flows of E-M power
•Power flow is directed along this vector

•Usually parallel to k
•Intensity is equal to the magnitude of the time averaged Poyning vector: I=<S>

example



Wave equations in a medium

The induced polarization in Maxwell’s Equations yields another term in 
the wave equation:

This is the Inhomogeneous Wave Equation.

The polarization is the driving term for a new solution to this equation.
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Homogeneous (Vacuum) Wave Equation

Phase velocity

*Phase velocity can exceed the speed of light in a 
dispersive medium where the refractive index n is not 
necessarily >1.  



Spherical waves

• where k is a scalar, and 
• r is the radial magnitude.

Unlike a plane wave, whose amplitude remains constant as it
propagates, a spherical wave weakens. Its irradiance goes as 1/r2.

A spherical wave has spherical wave-fronts.
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Note that k and r are 
not vectors here!

A spherical wave is also a solution to Maxwell's equations and is a good model for the 
light scattered by a molecule.



Interference [Hecht 9.1-9.4, 9.7.2; Fowles 3.1-3.1; Notes]
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Consider the Optical Path Difference (OPD)
Or simply the superposition of two plane waves
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Michelson Interferometer

Key words/Topics: 
Michelson Interferometer, Dielectric thin film, Anti-reflection coating, 
Fringes of equal thickness, Newton rings.



The Michelson Interferometer and Spatial Fringes

• Suppose we misalign the mirrors 
• so the beams cross at an angle 
• when they recombine at the beam 
• splitter.  And we won't scan the delay.

• If the input beam is a plane wave, the cross term becomes:
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•Suppose we change one 
arm’s path length.
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The fringes will shift in 
phase by 2kd.
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The Unbalanced Michelson Interferometer
can sensitively measure phase vs. position.

• Phase variations of a small fraction of a wavelength can be measured.

Placing an object in one arm of a misaligned 
Michelson interferometer will distort the 
spatial fringes.

Beam-
splitter

Input
beam

Mirror

Mirror

θ

Spatial fringes distorted by 
a soldering iron tip in one 

path

See HW#8 Problem #1



Michelson interferometers: the compensator plate

Beam-
splitter

Input
beam

Mirror

Mirror

Output
beam

If reflection occurs off the 
front surface of beam 
splitter, the transmitted 
beam passes through 
beam splitter three times; 
the reflected beam passes 
through only once.

So a compensator plate
(identical to the beam 
splitter) is usually added 
to equalize the path 
length through glass.



Interference Fringes and Newton Rings



Phase shift on reflection at an interface
Near-normal incidence

π phase shift if ni < nt

0 (or 2π phase shift) if ni > nt



Young’s double slit interference experiment

s
yaam m

m ≈≈ θλ sin

order m maxima occur at:



Diffraction



Diffraction Geometry

We wish to find the light electric field after a screen with a hole in it.

This is a very general problem with far-reaching applications.

What is E(x1,y1) at a distance z from the plane of the aperture?

Incident 
wave This region is assumed to be 

much smaller than this one.

x1
x0

P10

A(x0,y0) y1y0



Diffraction Solution

The field in the observation plane, E(x1,y1), at a distance z from the aperture 
plane is given by:
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where :

and : 

A very complicated result!  And we cannot approximate r01 in the exp by z
because it gets multiplied by k, which is big, so relatively small changes in r01
can make a big difference!

Spherical 
wave



Fraunhofer Diffraction: The Far Field
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We can approximate r01 in the denominator by z, and if D is the size of the 
aperture, D 2 ≥ x0

2 + y0
2, so when k D2/ 2z << 1, the quadratic terms << 1, so 

we can neglect them:

This condition means going a distance away:  z >> kD2/2 = πD2/λ
If D = 1 mm and λ = 1 micron, then z >> 3 m.
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Independent of x0 and y0,
so factor these out.

Small, so neglect 
these terms.



Fraunhofer Diffraction

We’ll neglect the phase factors, and we’ll explicitly write the aperture function 
in the integral:
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This is just a Fourier Transform!

Interestingly, it’s a Fourier Transform from position, x0, to another position 
variable, x1 (in another plane). Usually, the Fourier “conjugate variables” have 
reciprocal units (e.g., t & ω, or x & k). The conjugate variables here are really x0
and kx = kx1/z, which have reciprocal units.

So the far-field light field is the Fourier Transform of the apertured field!

E(x0,y0) = constant if a plane wave



Diffraction: single, double, multiple slits 
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Java applet – Single Slit Diffraction
http://www.walter-fendt.de/ph14e/singleslit.htm

Study Guide: Hecht Ch. 10.2.1-10.2.6 (detailed lengthy discussions), 
Fowles Ch. 5 (short but clear presentation), or Lecture Notes

http://www.walter-fendt.de/ph14e/singleslit.htm�
http://www.walter-fendt.de/ph14e/singleslit.htm�
http://www.walter-fendt.de/ph14e/singleslit.htm�


Diffraction: Double and Multiple Slits
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See also 
http://demonstrations.wolfram.com/MultipleSlitDiffractionPattern/ and
http://wyant.optics.arizona.edu/multipleSlits/multipleSlits.htm

http://demonstrations.wolfram.com/MultipleSlitDiffractionPattern/�
http://wyant.optics.arizona.edu/multipleSlits/multipleSlits.htm�


Fraunhofer diffraction from 
two slits (Fourier Transform)

A(x0) = rect[(x0+a)/w] + rect[(x0-a)/w]
0 x0a-a
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Diffraction from one- and two-slit screens

Fraunhofer diffraction patterns

One slit

Two slits



Diffraction Gratings

•Scattering ideas explain what happens when 
light impinges on a periodic array of grooves.  
Constructive interference occurs if the delay 
between adjacent beamlets is an integral 
number, m, of wavelengths.   

[ ]sin( ) sin( )m ia mθ θ λ− =

where m is any integer.

A grating has solutions of zero, one, or many values of m, or orders.

Remember that m and θm can be negative, too.

Path difference:   AB – CD = mλ

Scatterer

Scatterer

a

θi

θm

a

AB = a sin(θm)

CD = a sin(θi)

A

D
C

B

Potential
diffracted wave-
front

Incident wave-
front

θi

θm



Diffraction orders

Because the diffraction angle depends on λ, 
different wavelengths are separated in the 
nonzero orders. 

No wavelength 
dependence 
occurs in zero 
order.

The longer the wavelength, the larger its deflection in each nonzero order.

Diffraction angle, θm(λ)

Zeroth order

First order

Minus first 
order

Incidence angle, 
θi



The Diffraction Grating

λθ ma m =sin

Grating Equation 

(Optical Path Difference OPD= m λ)

Hecht 10.2.8 or Fowles Ch. 5 p.123 (handout)

Normal incidence θi =0

( )sin sinm ia mθ θ λ− =

The chromatic/spectral resolving power of a grating 

R mNλ
λ

≡ =
∆

m is the order number, and 
N is the total number of gratings.



Uniform Rectangular Aperture
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Uniform Circular Aperture
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A circular aperture

yields a diffracted

"Airy Pattern,"

which involves a

Bessel function.



Diffraction from small and large circular apertures

Recall the Scale Theorem!
This is the Uncertainty 
Principle for diffraction.

Far-field intensity 
pattern from a 
small aperture

Far-field 
intensity pattern 

from a large 
aperture



Wave optics of a lens
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The spot diameter is 

The resolution of the lens as defined by the “Rayleigh” criterion is 

For a small angle θ, 



Gaussian Beam Optics (only eq. (4))



Basic Fourier Optics (~30-50 points)



There are several ways to denote the Fourier transform of a function.

If the function is labeled by a lower-case letter, such as f,  
we can write:

f(t) → F(ω)

If the function is already labeled by an upper-case letter, such as E, we 
can write:

or: 

Fourier Transform Notation

( ) ( )E t E ω→ ( ) { ( )}E t E t→ F

∩Sometimes, this symbol is 
used instead of the arrow:



Example:  the Fourier Transform of a rectangle function:  rect(t)

1/ 2
1/ 2

1/ 2
1/ 2

1( ) exp( ) [exp( )]

1 [exp( / 2) exp(

exp( / 2) exp(
2

sin(

F i t dt i t
i

i i
i

i i
i

ω ω ω
ω

ω ω
ω

ω ω
ω

ω
ω

−
−

= − = −
−

= − − /2)]
−

1 − − /2)
=

( /2)
/2)

=
( /2)

∫

( sinc(F ω ω) = /2) Imaginary 
Component = 0

F(ω)

ω



ω

2πδ(ω)

The Fourier Transform of δ(t) is 1.
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The Fourier transform of exp(iω0 t)
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The function exp(iω0t) is the essential component of Fourier analysis.  
It is a pure frequency.
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The Fourier transform of cos(ω0 t)
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Scale Theorem

The Fourier transform 
of a scaled function, f(at): { ( )} ( / ) /f at F a aω=F

{ ( )} ( ) exp( )f at f at i t dtω
∞

−∞

= −∫F

{ ( )} ( ) exp( [ / ]) /f at f u i u a du aω
∞

−∞

= −∫F

( ) exp( [ / ] ) /f u i a u du aω
∞

−∞

= −∫
( / ) /F a aω=

If a < 0, the limits flip when we change variables, introducing a 
minus sign, hence the absolute value.

Assuming a > 0, change variables:  u = at

Proof:



The Scale 
Theorem 
in action

f(t) F(ω)

Short
pulse

Medium-
length
pulse

Long
pulse

The shorter 
the pulse, 

the broader 
the spectrum!

This is the essence 
of the Uncertainty 
Principle!
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The Fourier Transform of a sum of two functions
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Shift Theorem
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The Fourier transform of a shifted function,

Proof :

Change variables :
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Fourier Transform with respect to space

F  {f(x)}  =  F(k)

( ) ( ) exp( )F k f x ikx dx
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If f(x) is a function of position,

We refer to k as the spatial frequency.

Everything we’ve said about Fourier transforms between the t and ω
domains also applies to the x and k domains.

k
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The 2D Fourier Transform

F  (2){f(x,y)}  =  F(kx,ky) 

=       f(x,y) exp[-i(kxx+kyy)] dx dy

If f(x,y) = fx(x) fy(y), 

then the 2D FT splits into two 1D FT's.  

But this doesn’t always happen.

∫∫
F  (2){f(x,y)}

x
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f(x,y)



Fibers (will not be covered in 2010)
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The number of modes in a stepped-index fiber is 

and 

.
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