The Physics 431 Final Exam

WED, DECEMBER 15, 2010
12:45~2:45 P.M. B
BPS 1320 (NOT 1308!!!)

o Calculators, 2 letter-size sheets “handwritten notes” OK
. Graded lab reports =================9 0K
J Books, old HW, laptops NO

The exam includes topics covered throughout the semester
Greater emphasis will be placed on the 2" half of the course
The exam consists of problems totaling 250 pts.

Show all work on exam pages — circle your answers

Grades will be posted at BPS 4238 by 12 pm Friday, December 17. Remember
your “pass code” from the final exam.

Check “Midterm Review Slides” for topics covered in Midterm I.
Review “Final Exam Topics” posted/handed out in class.




Telescope

. : e : : A Magnifying Lens
Obiject is at infinity so image is at f Ny
object 1, P
Measure angular magnification 25 cm (>
Length of telescope light path is sum of -
focal lengths of objective and eyepiece mage | H/"_ 7
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‘ The exit pupil is the image of the aperture stop (AS).
Define CA, = entrance pupil clear aperture
CA_= exit pupil clear aperture
oF- i P From the diagram, it is clear that
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Microscope

eyeplece

X" Is the tube length:

standard x’ rangingl160mm to 250mm

Magnification is product of lateral

magnification of objective and angular

magnification of eyepiece

Note: Image is viewed at infinity

— The objective lens produces a real
(inverted), magnified image of the
object

— The eyepiece re-images to a com-
fortable viewing distance and pro-
vides additional magnification.
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Eve (Hecht 5.7.1 and Notes)

retina

aqueous

vitreous fovea-macula

blind spot

optic nerve
cornea

Visual Acuity (VA)

T
(mm) n R (mm)

cornea f 0 1.376 7.7

b 0.5 6.8
aqueous 1.336
lens £ 4.0 1.386-1.406 10.0 (relaxed). 5 (focused)

b 7.0 —6.0 (relaxed). —5 (focused)

vitreous 1.336
retina 244

The separation between cone cells in the fovea corresponds to about 1’ (0.3 mrad). At close viewing dis-

tance of 25 cm, this gives a resolution of 75 pm.

This is close to the diffraction limit imposed by NA of the eye.

Visual acuity (VA) is defined relative to a standard of 1 minute of arc. VA = 1/(the angular size of small-

est element of a letter that can be distinguished [in min])

5 min 1 min

Y

dist to target (usually 20 f)

VA is usually expressed as | — ‘ —
dist at which target element is 1 min

For 20/20 vision, the minimum element is 1 min at 20 ft.

The overall power of the eye is ~ 58.6 D. The lens surfaces are not spherical, and the lens index is higher

at the center (on-axis). Both effects correct spherical aberration. The diameter of the iris ranges from 1.5

— S mm.

Topics/Keywords:

Eye model, Visual Acuity, Cones/Rods
accomodation, eyeglasses,
nearsightedness/myopia,
farsightedness/hyperopia

range of clear vision 25 cem
— |
near
point
50 em
far
point
— |

(D>

normal
eye

myopic
eye

corrected
myopic
eye




Human Eye — Gullstrand Model

Choroid

Ciliary muscle

Sclera

Cornea

llzg!1361
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24.4

Table 10A PRINCIPAL DIMENSIONS FOR GULLSTRAND’S SCHE-
MATIC EYE
Overall power of eye = 58.64 D

Axis Radius
Refractive position, curvature,
index mm mm
Cornea, anterior 1.376 0 1.7
and posterior 0.5 6.8
Agqueous humor 1.336
Vitreous humor ' 1.336
Lens:
Cortex, anterior 1.386 3.6 10.0
and posterior 7.2 —-6.0
Core, anterior 1.406 4.15 7.9
and posterior 6.57 5.8
Cardinal points:
AH 1.348
AH’ 1.602
AN 7.08
AN’ 7.33
AF —15.70

AF’ 24.38




Retina — Cones and Rods

Rods are most sensitive to light. but do not sense color, motion

445 nm 535 nm 575 nm

Cones are color sensitive i bright light.

You have ~ 6 million cones, ~ 120 million rods, but only | million nerve fibes.

Cones are 1 -1.5 um diameter, 2 -2.5 wm apart i the fovea.

Rods are ~ 2 um diameter

Absorption
(arbitrary units)

The macula1s 5° to the outside of the axis.

The fovea 1s the central 0.3 mm of the macula. It has only cones and is the center of sharp vision.

650 700 nm

450 _ 500 550 600

. . a1y = o '»E_'\ =
Current understanding is that the 6 to 7 million cones can be 532 £, . 5 s 5§ %‘ 2 % -
2 om @@ G 26 £6 &5 &

divided into "red" cones (64%), "green" cones (32%), and

"blue" cones (2%) based on measured response curves.
—_— Human spectral sensitivity to color
Three cone types (p, v ) correspond roughly to R, G, B.
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Numerical Aperture

O: halt-angle subtended by the
1mmaging system from
an axial object

medium of

refr. index n .
Numerical Aperture

(NA)=n sinB

.

Speed (f/#)=1/2(NA)

pronounced f-number, e.g.
/8 means (/#)=8.

Paraxial approximation

_ Aperture stop
Sin (9 ) ~ lan (9 ) ~ 0 the physical element which

NA D/2 1 limits the angle of acceptance of
— AT the 1imaging system

We will learn that
the spatial resolution limit due to diffraction = 1.22xf A /D=0.61xA/NA [Rayleigh Criterion].



The Chief Ray

|

Starts from off-axis object,
Goes through the center of the Aperture

For an off-axis object, the chief ray (CR) is the ray that passes
through the center of the aperture stop. Rays that pass through
the edge of the aperture stop are marginal rays (MR).



Aperture Stop and Entrance & Exit Pupil

mmage through mmage through
preceding elements succeeding elements
Aperture Stop (AS)
entrance multi-element .
. optical system exit
pupil _ .
~" pupil

The aperture stop (AS) is defined to be the stop or lens ring, which physically limits
the solid angle of rays passing through the system from an on-axis object point. The
aperture stop limits the brightness of an image.

The entrance pupil of a system is the image of the aperture stop as seen from an axial
point on the object through those elements preceding the stop. (Hecht p. 171)

The exit pupil of a system is the image of the aperture stop as seen from an axial point
on the image plane through the interposed lenses, if there is any. (Hecht p. 172)



Monochromatic plane waves

Plane waves have straight wave fronts
— As opposed to spherical waves, etc.

— Suppose _ iker
5 E(r)=E.ze L -
—iwt N
E(r,t)=Re{E(r)e™} \\\\\ E,
iKer A—iw B

— Re{Eoe ‘ € t} \\.\V\ Vv,

— Re{E e'*""} ~
— E, still contains: amplitude, polarization, phase

— Direction of propagation given by wavevector:

k = (k,.k,,k,) where |K|=2 /A= wlc ‘ ‘ ‘ ’_H_.

— Can also define

E:(Ex’Ey’Ez) // \/
— Plane wave propagating in z-direction
propagating /7(// /ﬂ\

E(Z1t) = Re{Eoei(kz_wt)} = %{Eoei(kz_m) + E;e_i(kz_aﬂ)}

Key words: energy, momentum, wavelength, frequency, phase, amplitude...



Poynting vector & Intensity of Light S=ExH

Summary (free space or 1sotropic media) I
1 , S=—ExB=c’¢,ExB
S = H_E X B’ ”SH - chHEH Poynting vee S ﬂzo in free space
0
1 t+1 S ” k
<“S||> =— J‘”S”dz‘ Irradiance (or intensity) S has units of W/m?2
I t B SO It represents

energy flux (energy per
unit time & unit area)

*Poynting vector describes flows of E-M power
*Power flow is directed along this vector
eUsually parallel to k
eIntensity is equal to the magnitude of the time averaged Poyning vector: |=<S>

P 1239.85
() =1 EMxH() [ E =2 (E7 +E /) [holeV]= prame

Cg, = 2.654x107 A/V example E -1V /m h =1.05457266 x 10" Js

=?2W /m°




Wave equations in a medium

The induced polarization in Maxwell’s Equations yields another term in
the wave equation:

O%E O%E 0°E B 1 6°E B
572 My T oz° v° ot’

This is the Inhomogeneous Wave Equation.

0

0

The polarization is the driving term for a new solution to this equation.

0°E e 62E_O 0°E 152E_O
o2 "0 at? oz c* ot?
Homogeneous (Vacuum) Wave Equation
E(z,t)=Re{E e C
( ) { _Ok }* » — =10 Phase velocity
_ 2{Eoel( z-wt) n Eoe—l( z—a)t)} V

=| E, | COS(kZ _ a)’[) *Phase velocity can exceed the speed of light in a
dispersive medium where the refractive index n is not
necessarily >1.



Spherical waves

A spherical wave is also a solution to Maxwell's equations and is a good model for the
light scattered by a molecule.

Note that k and r are
not vectors here!

l

E(F,t) o (E, / r)Re{expli(kr — wt)]}

e where ks a scalar, and
— e risthe radial magnitude.

A spherical wave has spherical wave-fronts.

Unlike a plane wave, whose amplitude remains constant as it
propagates, a spherical wave weakens. Its irradiance goes as 1/r2.



Interference [Hecht 9.1-9.4, 9.7.2; Fowles 3.1-3.1; Notes]

Michelson Interferometer

E(r)=Ee""
E(r,t)=Re{E(r)e™}
=Re{Ee""e™"}
= Re{E,e'*"}

Consider the Optical Path Difference (OPD)
Or simply the superposition of two plane waves

Figure 9.24 The Michelson Interferometer. (a) Circular fringes are cen-
tered on the lens. (b) Top view of the interferometer showing the path
of the light. {c) A wedge fringe pattern was distorted when the tip of a
hot soldering iron was placed in cne arm. Observe the interesting per-

_ |k1 or, Ik2 or, ceptual phenomenon whereby the region corresponding to the iron’s tip
r - 1e + 2 e appears faintly yellow, (Phato by E. H.)

| 4 E(r)f=ExE’

Key words/Topics:
Michelson Interferometer, Dielectric thin film, Anti-reflection coating,

Fringes of equal thickness, Newton rings.



The Michelson Interferometer and Spatial Fringes

I Input

e Suppose we misalign the mirrors Mirror
e 5o the beams cross at an angle

e when they recombine at the beam

e splitter. And we won't scan the delay.

Beam-

splitter Fringes

Mirror
e |fthe input beam is a plane wave, the cross term becomes:

Re{EO exp|i(mf —4zc5s 9 —kxsin O] E, exp[—i(at -z cas ¢ + kxsin 9]}

o Re {exp[-2ikxsin 6]}
) Fringes (in position)
oc €0S(2kx sin ) |

Crossing beams maps delay
onto position. X



Mirror

*Suppose we change one
arm’s path length.

splitter Fringes

Re{EO exp|i(mt —kzcos@—kxsin 8+ 2kd | E,” exp[—i(wt —Kz cos & + kxsin 0]
oc Re {exp[-2ikxsin 6+ 2kd |}

oc C0S(2kx sin @ + 2kd)

Irror }

Fringes (in position)
I

The fringes will shift in
phase by 2kd.



The Unbalanced Michelson Interferometer
can sensitively measure phase vs. position.

See HW#8 Problem #1

Placing an object in one arm of a misaligned
Michelson interferometer will distort the
spatial fringes.

Spatial fringes distorted by
a soldering iron tip in one

Input
beam

Mirror

Beam-
splitter

Mirror

* Phase variations of a small fraction of a wavelength can be measured.



Michelson interferometers: the compensator plate

Input
beam Beam-

litter
Y /Sp

Output

beam
Mirror H >

\ If reflection occurs off the

front surface of beam
splitter, the transmitted
So a compensator plate beam passes through
(identical to the beam beam splitter three times;

splitter) is usually added —— the reflected beam passes
to equalize the path through only once.
length through glass. Mirror




Interference Fringes and Newton Rings

Point
source

Figure 9.17 Fringes of equal inclination.

Quasimonochromatic
PHOMNE SOurce

Beam splitter
{glass platc)

Newton's rings with two microscope slides. The thin film of air between |
the slides creates the interference pattern. (Photo by £, H.) '

§ ﬂ_',:::

Newton’s Rings i S
From the figure, ifRsd, then
x2R?~(R-d)* = x*=2Rd

Figure 9.23 A standard setup to observe Mewton's rings

The interference maximum will occur if
1
2"ffm:(m+§))"o
Thus, the radius of the bring rings are

X,z ‘ (m+%}lfR

Similarly, the radius of dark rings are

X, =mAR

Interference from the thin air film between a convex lens and the fiat
sheet of glass it rests on. The illumination was quasimonochromatic.
Thesa fringes were first studied in depth by Newton and are known as
Newton's rings. (Photo by EH.)



Phase shift on reflection at an interface

Near-normal incidence ; _(Eo:—] _m;cost, —n,cos b, Note: independent of polarization
= =
. E, n.cosl, +n, cos,
n phase shiftif n, < n,
; _[&] 3 2n, cos b, 01_:0 and 9{:0 o= = n.—n,
. . LT - L= = _—
O (or 2 phase shift) if n, > n, Eoi ). meos+n,cost, ‘ n,+n,
. E, | _ncos6,—n,cosb, , , 2n,
" E, | 1 cost +n cosd, L= n,+n,
;= Ey | _ 2n; cos b,
” E, . cost +n, cosb,
| _ ' 2
I. Transmission and reflection at a boundary R =R = h,—n,
The sketches below show a pulse approaching a boundary between two springs. In one case, the L N n +n
pulse approaches the boundary from the left; in the other, from the right. The springs are the t i
same in both cases, and the linear mass density is greater for the spring on the right than for the 4
spring on the left. 7T =T = n.n,
' < S )
Before: — % Before: ! i
“mlw__w__,»“ﬁ\k ~ ) T\l
Boundary Boundary
After: After:
Boundary Boundary

Complete the sketches to show the shape of the springs a short time after the trailing edge of the
pulse shown has reached the boundary. Be sure to show correctly (1) the relative widths of the
pulses and (2) which side of the spring each pulse is on. (Ignore relative amplitudes.)



Young’s double slit interference experiment

order m maxima occur at:

mA=asing, = a Im

S



Diffraction

Fresnel approximation

Huygens-Fresnel integral in rectangular coordinates:

1) A £ s
T ; ’
f ]
/

12

7ol [22+(.\'—lj)1+(,‘l'—l‘|)1|

The Fresnel approximation involves setting: ro =2 in the denominator, and

& ]‘ — ¥ - A
(‘—U— mn exponent
-

L Cl(x=2) 1
;m_z{ Tz "

This 1s equivalent to the paraxial approximation in ray optics.

Ty 1 :CX ;‘Z) . £ e Ji . ';2 . 2
Utx, ) —W—ﬁ‘z [ et mexpiEle-07+-n))

—a0

Farther out in z, we can approximate the quadratic phase as flat

2
N Jwmax
2

k o2, 2
X"ty

Ulx, v) A
Jhz

II dzdnU(E, n)exp

HUG, n)}‘

Now this 1s exactly the Fourier transform of the aperture distribution with

f, == f, ==

rZ

-

5]

The Fraunhofer region 1s farther out. For the field size of 1 cm, and % = 0.5um. we find the valid
range of z» 150 meters!

Again, examining the full integral. Fraunhofer is actually accurate and usable to much closer dis-
lances.

(A)

Let’s examine the validity of the Fresnel approximation in the Fresnel integral. The next higher order
term in exponent must be small compared to 1. So the valid range of the Fresnel approximation is:

3. o2 2.2
z »ﬁ[(_\‘ E)Y +(v—1) lmax

For field sizes of 1 em, 2 = 0.5um , we find z» 25 em.

Actually we should look at the effect on the total integral. Upon closer analysis, it 1s found that the
Fresnel approximation holds for a much closer z. This is referred to as the “near-field region”.



Diffraction Geometry

We wish to find the light electric field after a screen with a hole in it.
This is a very general problem with far-reaching applications.

)’0Al Aperture A(X,,Y,) Y1

e e

__11:' ‘JI" l:.?.fﬂ_' y1}1
= e

Observation
region,

Incident Ei

wave This region is assumed to be /v

much smaller than this one.

What is E(X;,y;) at a distance z from the plane of the aperture?



Diffraction Solution

The field in the observation plane, E(X;,Y;), at a distance z from the aperture
plane is given by:

E(X,Y.,2) = j (X, = X5, Y1 = Yo, Z)E(Xy, ¥o) dX, dy,

Ao, Yo)
where : h(xl _ XO! y]_ . yo’ Z) _ 1 eXp(lkr01)
I4 ™
Spherical
2 2
and : r01:\/22_|_(x0_)(1) +(yo_yl) wave

A very complicated result! And we cannot approximate ry; in the exp by z
because it gets multiplied by k, which is big, so relatively small changes in ry;
can make a big difference!



Fraunhofer Diffraction: The Far Field

We can approximate ry, in the denominator by z, and if D is the size of the
aperture, D2 > x,°+ y,%, so when k D%/ 2z << 1, the quadratic terms << 1, so

we can neglect them:

I, :\/z2 +(x0—x1)2 +( Y, —yl)2 ~ z[1+(xO —xl)2 /277 +(y0—y1)2 /222}

kr,, ~ kz+k(x§—2x0x1+xf)/22+k(y§—2y0yl+yf)/22

Small, so neglect T T T T Independent of X, and y,,
these terms. so factor these out.
exp(ikz XY, ik
E (X, ;)= P( )exp ik exp{——(xox1 + yoyl)} E (X, Y, ) dX, dy,
1Az 21 Z
A(Xo.Yo)

This condition means going a distance away: z >> kD?/2 = nD?%/4
If D=1 mm and A =1 micron, then z>> 3 m.



Fraunhofer Diffraction

We'll neglect the phase factors, and we’ll explicitly write the aperture function
in the integral:

1
E (X1’ yl) x EXp _7(X0X1 T on1) A%, ¥o) E (X5, Vo) dX, Y,

This is just a Fourier Transform! E(Xo:¥o) = constant if a plane wave

Interestingly, it’s a Fourier Transform from position, X,, to another position
variable, X, (in another plane). Usually, the Fourier “conjugate variables” have
reciprocal units (e.g., t & o, or X & k). The conjugate variables here are really X,
and k, = kx,/z, which have reciprocal units.

So the far-field light field is the Fourier Transform of the apertured field!



Diffraction: single, double, multiple slits

Study Guide: Hecht Ch. 10.2.1-10.2.6 (detailed lengthy discussions),

Fowles Ch. 5 (short but clear presentation), or Lecture Notes “}" e i s rcsers
not the electric field) distribution
1 \
y N
[ O N
N = B in B2
\‘* : . o sm,ﬂ)

L =3k =2Alb —Afb o Afh 2ath 3adh sin §f

Single Slit (Ax<Ay - B,<B,)

sinc(B,) changes much faster than sinc(g,)
(h) . i . . " "

(9)=1(0 2]

kb . b . Java applet — Single Slit Diffraction
p= 75"1 0 = ”;S'n 0 http://www.walter-fendt.de/ph14e/singleslit.htm



http://www.walter-fendt.de/ph14e/singleslit.htm�
http://www.walter-fendt.de/ph14e/singleslit.htm�
http://www.walter-fendt.de/ph14e/singleslit.htm�

Diffraction: Double and Multiple Slits

“Half-fringe"”

sinf

Figure 10.13 (a) Double-slit geometry. Point P on o is essentially infi-

nitely far away. (b) A double-slit pattern (a = 3b).

] 2 ]
10)=1(0)| "2 :2::;

2

,B:%kbsin o, y:%kasine

See also
http://demonstrations.wolfram.com/MultipleSlitDiffractionPattern/ and
http://wyant.optics.arizona.edu/multipleSlits/multipleSlits.htm



http://demonstrations.wolfram.com/MultipleSlitDiffractionPattern/�
http://wyant.optics.arizona.edu/multipleSlits/multipleSlits.htm�

Fraunhofer diffraction from
two slits (Fourier Transform)

W W
-a 0 a Xo

A(X,) = rect[(x,+a)/w] + rect[(x,-a)/w]

E(x,) oc. 7 {A(X)}

oc sinc[wi(kx, / z) / 2]exp[+ia(kx, / )]+
sinc[w(kx, / z)/2]exp[—-la(kx, / )]

|E(x,) oc sinc(wkx, / 22) cos(ak, / z)|




Diffraction from one- and two-slit screens

Fraunhofer diffraction patterns

One slit

Two slits




Diffraction Gratings

*Scattering ideas explain what happens when /

. . . T a
light |mp|r.1ge§ on a periodic array. of grooves. Scatterer
Constructive interference occurs if the delay
between adjacent beamlets is an integral

number, m, of wavelengths.

Path difference: AB-CD =mA

/ AB =asin(4,)

Scatterer _
CD =asin(6)

‘a[sin(@m) —sin(4,)] = m/l‘

where m is any integer.
A grating has solutions of zero, one, or many values of m, or orders.

Remember that m and g, can be negative, too.



Diffraction orders

Because the diffraction angle depends on 4,
different wavelengths are separated in the
nonzero orders.

No wavelength
dependence
occurs in zero
order.

The longer the wavelength, the larger its deflection in each nonzero order.



The Diffraction Grating

Hecht 10.2.8 or Fowles Ch. 5 p.123 (handout)

Ist order

N

mth order

| AB - €D = a(sin@,, — sin6,)

Figure 10.28 A transmission grating.

Grating Equation
(Optical Path Difference OPD=m A)
a(sing, —sing )=mA

asing, =mA  Normalincidence 6, =0

The chromatic/spectral resolving power of a grating

Eisz
AA

m is the order number, and
N is the total number of gratings.



Uniform Rectangular Aperture

——————

(a) Fraunhofer pattern of a square aperture.
(b) The same pattern further exposed to
bring out some of the faint terms.

Photos by E. H.

Uniform Rectangular Aperture

Figure 10.19 A rectangular aperture.

diffra

at a square aperture. (c) The electric-field distribution
ed by Fraunhofer diffra 5

Via @ square aperture. (Phatos courtesy R. G. Wilson, linois

- 2
1(6)=1(0 Sl L a:%kasine; ,B:%kbsine




Uniform Circular Aperture

(bl
(a)

Airy rings using (a) a 0.5-mm hole diameter and (b) a 1.0mm hole diam-
eter. (Photo by E. H.)

2J, ,0) ’
Jo,

1(6)=1(0)
) 27T
=kRsing; k=—
o, sin P

A circular aperture

yields a diffracted

kasin®  Figure 10.23 (a) The Airy pattern. (b) Electric field created by
Fraunhofer diffraction at a circular aperture. (c) Irradiance resulting
from Fraunhofer diffraction at a circular aperture. (Photos courtesy R. G
Wilson, llinois Wesleyan University.)

"Airy Pattern,"

-8.42
—7.02
—5.14
-3.83

which involves a
Bessel function.



Diffraction from small and large circular apertures

Far-field intensity
pattern from a
small aperture

Recall the Scale Theorem!
This is the Uncertainty
Principle for diffraction.

Far-field
intensity pattern
from a large
aperture




Wave optics of a lens

We have previously seen that light passing through a lens experiences a phase delay given by:

o(x, 1) = exp|—jk(n 1)(%1—](% le (neglecting the constant phase)
L B
The focal length, [ is given by:
l\: (n—1 )Iir 1 L] The “lens makers formula”
J Ry Ry

The transmission function 1s now:

o(x,y) = exp —_;'%I.\‘: I,1': ]J

This 1s the paraxial approximation to the spherical phase

Note: the incident plane-wave is converted to a spherical wave converging to a point at f behind t
lens (f positive) or diverging from the point at f in front of lens (f negative).

(e

Diffraction from the lens pupil

Suppose the lens is illuminated by a plane wave, amplitude A. The lens “pupil function™ is P(x,y).

The focal plane amplitude distribution is a Fourier transform of the lens pupil function Prx,v), multi-

plied by a quadratic phase term. However, the intensity distribution is exactly

#HP(hz59)]

2awr/ Wz,

. 2
[h()]” = ==
2

4 [ 1Qmwr/iz, IT

2awir/ hzs

The spot diameter is
Af A

The full effect of the lens is

Ul(x,»)

@lx, v)P(x, v)

d=122—=122—
w 0

The resolution of the lens as defined by the “Rayleigh” criterion is

d/2=0611/6
For a small angle 6,

d/2=0614/sing=061"
NA



Gaussian Beam Optics (only eq. (4))

-

7= oo A
laser planar wavefront ——
!
z=0 2wo\2 )
. planar wavefront T |
\ —T1 ————________..__TT_‘T__T_‘t:—:t—-‘-—-_ir'a" N | ' I|
Gaussian I | | y | —
profile (/,ff’ | T el | | |
A el o U . |
Y 2w N == ———————— |
Z=1r ]
maximum curvature - II
Y
> ') 2 ) 2¥2 22
. 2wt 2P 2w [ iz Y] [ z 1
I(.‘)—IDE =—0F¢€ W(z)=w0[1+ -3 J =w¢.l—1+— J @)
Ll ﬂwo ZR
™
where we have defined a new parameter, called the Rayleigh range,
va
4 2 = Y, A (3}
W,
R (“) =z|1 _ which combines the wavelength and waist radius into a single parameter and completely
Az describes the divergence of the Gaussian beam. Note that the Rayleigh range is the
distance from the beam waist to the point at which the beam radius has increased to
v2w,. For a 633 nm red He-Ne laser with a waist of 0.4 mm, z, = 0.8 m.
and
12 When z >>Z,, Eq. (2) simplifies to w= WOZ/ZRand the laser beam diverges at a
}\ 2 - constant angle
Z wow A
w(z)=wy|1+| — 0= =Tt )
W,y °

Note that the smaller the Rayleigh range, the more rapidly the beam diverges.

Gaussian
intensity
profile



Basic Fourier Optics (~30-50 points)



Fourier Transform Notation

There are several ways to denote the Fourier transform of a function.

If the function is labeled by a lower-case letter, such as f,
we can write:

f(t) > F(w)

If the function is already labeled by an upper-case letter, such as E, we
can write:

I

E(t) > 7{E®)}  E(t)— E(0)

Sometimes, this symbol is -
used instead of the arrow:



Example: the Fourier Transform of a rectangle function: rect(t)

1/2
1/2

F(w) = J- exp(—iwt)dt = .L[eXp(_ia)t)]_uz
—lw

(1)

-1/2

— L [exp(-iw/2) - exp(iar2)]

—iw

_ 1 exp(io/ 2) —exp(—iaw/2)

(@/2) 2

_sin(w/2) e A

B (aw/2)

F(o)=sinc(w2)| Sy
AN

-1/2 1/2

P~ A\
V7 \J \&/




The Fourier Transform of Xt) is 1.

]O 5(t) exp(~imt) dt = exp(~i[0]) = 1

A1) 1

=

0ot ©

And the Fourier Transform of 1 is 2r & w): I lexp(—iwt) dt =27 6(w)

1 ‘Zﬂﬂ )

=

T 0 o




The Fourier transform of exp(iw,t)

o0

7 {expliogt)! = j' exp(ics, t) exp(—i ot) dt

= j exp(—i_i):oa)—a)o]t) dt = 27 o(w—w,)

—00

exp(iayt) F{exp(iayt)}
Im t
0 # )
RE/\ /\ /\ :t 0 @,
[0S

The function exp(iogt) is the essential component of Fourier analysis.
It is a pure frequency.



The Fourier transform of cos(w, t)

7 {cos(m,t)} = j cos(w,t) exp(—i wt) dt

—00
o0

_ % J' (exp(i a, t) + exp(—i a, t)] exp(—i wt) dt

—00
o0 o0

= % J' exp(—i[o—aw]t) dt  + % j exp(—t[o+a,]t) dt

—00 —Q0

=rno(lw—w,) + nwo(w+w,)

4 cos(ayt) 7 {cos(a,t)}

A T L




Scale Theorem

h ' f
ofsscneatncron . |7 1 (@)} =F(wla)/|a|

Proof: J{f (at)} = j f (at) exp(—iot) dt
Assuming a > 0, change variables: u = at

T{f (at)}= T f (u) exp(—iw[u/a]) du / a

_ I f (U) exp(—i [w/a] u) du / a

- F(ola)/a

If a <0, the limits flip when we change variables, introducing a
minus sign, hence the absolute value.



f(t) F()

The Scale
Short
Theorem oulse =
in action T 5

The shorter

the pulse Medium-
’ length
the broader pulse A . ‘ A >
t

the spectrum!

S

A

This is the essence Long
of the Uncertainty

pulse m)
Principle! __LL >
t .




The Fourier Transform of a sum of two functions

s Ay
e

——
@

g(t) G(w)

>
Tf+bgtl= | == A

a7 {f O}+b 7 {g()} )

> Flow) +
4:{ f(t)+g(t) G(w)

Also, constants factor out. t



Shift Theorem

The Fourier transform of a shifted function, f (t—a):

|7 {f (t-a)} = exp(-iwa)F (o)

Proof :

T {f(t-a)}= Of f (t—a)exp(—iwt)dt

—00

Change variables: u=t-a

T f (u)exp(—iw[u +a])du

= exp(—iwa) T f (u)exp(—iwu)du

= exp(—lwa)F (o)



Fourier Transform with respect to space

If f(x) Is a function of position,

*
F (k) = j_“ f (x) exp(—ikx) dx =
4
TH{i)} = F(K) X
We refer to k as the spatial frequency. k

Everything we’'ve said about Fourier transforms between the t and o
domains also applies to the x and k domains.



The 2D Fourier Transform

FOLXY)} = Flkek)

= j J' f(x,y) exp[-I(kx+k,y)] dx dy

if f(Xx,y) = £,(x) f,(y).

then the 2D FT splits into two 1D FT's.

But this doesn’t always happen.




Fibers (will not be covered in 2010)

Figure 5.70 Rays reflected within a dielectric cylinder. Figura 5.71 Rays in a clad optical fiber.

1. Total reflection.

Corning Glass Works, 1970: fiber with similar attenuation of copper cable. 1% per
km, or 20 dB/km. Currently, 96% per km or better, 1.e., 0.16 dB/km.

!‘-J

3. Benefit comparing to copper cables: low-loss, high data rate, small size and weight,

mmmune to electromagnetic interference, low cost.
4.
Calculation of acceptance angle® , which is the maximum incident angle for a ray to

experience total reflection in the fiber.

n ]
0,-—<=sin(90°-0)
n
f
Thus,
n
—=cos0,=/1-sin’6,
"y
Applying Snell;s Law,
1 2 n?
AR

Numerical aperture (NA): nsinf__ . the light-

sinf__,

gathering power.

NA=(n$ —nz)ll2

C

o
| | | 1
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Figure 5.74 Rectangular pulses of light smeared out by increasing

dispersion
{nmkm)

Inw;mm
amounts of dispersion. Note how the closely spaced pulses degrade
more quickly.

Flgure 5.73 Intermadal dispersion in a stepped-index multimode hoer,
Example:
Let axial length be L, the shortest length of ray path. Then, the longest pathL_ _is

when the incident angle is . The time difference Af becomes

2
All‘:_Lm_L =Lﬁ_ﬂr=ﬂ- "f

v, em, ¢ c¢on c_
If nf=l.5 and n_=1.489. then A#/L=37 ns/km, or a separation of distance 7.4 m/km. In order

to make the signal readable, the spatial separation might need to be twice of the spread-out
width. If the line 1s 1 km long, the output pulse is 7.4 m long, the separation should be 14.8 m
or 74 ns apart, which is 13.5 Million/s.

[
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Figure 5.75 The spreading of an input signal due to intermodal dispersion.

The number of modes in a stepped-index fiber is

N, ~1(zDxNA/ %)’
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