Geometrical Optics

Refraction at Spherical Surface

Optical Path Length (OPL) from S to P is

$$
O P L=n_{1} l_{0}+n_{2} l_{i}
$$

where

$$
\begin{aligned}
& l_{0}=\sqrt{R^{2}+\left(s_{o}+R\right)^{2}-2 R\left(S_{o}+R\right) \cos \phi} \\
& l_{i}=\sqrt{R^{2}+\left(s_{i}-R\right)^{2}+2 R\left(S_{i}-R\right) \cos \phi},
\end{aligned}
$$

By Fermat's Principle

$$
\frac{d(O P L)}{d \phi}=0 \Rightarrow \frac{n_{1} R\left(s_{o}+R\right) \sin \phi}{2 l_{o}}-\frac{n_{2} R\left(s_{i}-R\right) \sin \phi}{2 l_{i}}=0
$$

or

$$
\frac{n_{1}}{l_{o}}+\frac{n_{2}}{l_{i}}=\frac{1}{R}\left(\frac{n_{2} s_{i}}{l_{i}}-\frac{n_{1} s_{o}}{l_{o}}\right)
$$

which means that not all rays from S pass P.

Paraxial Approximation

For small $\phi, l_{i} \approx s_{i}, l_{o} \approx s_{o}$, the equation becomes

$$
\frac{n_{1}}{s_{o}}+\frac{n_{2}}{s_{i}}=\frac{n_{2}-n_{1}}{R}
$$

which is independent of the OPL, so all rays pass through P.
Define object focal length $f_{o}=\frac{n_{1}}{n_{2}-n_{1}} R \equiv s_{o}$ when $s_{i}=\infty$.
Define image focal length $f_{i}=\frac{n_{2}}{n_{2}-n_{1}} R \equiv s_{i}$ when $s_{o}=\infty$

Sign conventions

TABLE 5.1 Sign Convention for Spherical
Refracting Surfaces and Thin Lenses*
(Light Entering from the Left)

s_{o}, f_{o}	+ left of V
x_{o}	+ left of F_{o}
s_{i}, f_{i}	+ right of V
x_{i}	+ right of F_{i}
R	+ if C is right of V
y_{o}, y_{i}	+ above optical axis

*This table anticipates the imminent introduction of a few quantities not yet spoken of

Thin Lenses

From the first surface,

$$
\frac{n_{m}}{s_{o l}}+\frac{n_{l}}{s_{i l}}=\frac{n_{l}-n_{m}}{R_{1}} .
$$

For simplicity, assume $s_{i 1}$ is negative, i.e., a virtual image.
Since $\left|s_{o 2}\right|=\left|s_{i l}\right|+d$, by the sign convection, $s_{o 2}=-s_{i 1}+d$.
Thus, from the second surface,

$$
\frac{n_{p}}{-s_{i 1}+d}+\frac{n_{m}}{s_{i 2}}=\frac{n_{m}-n_{l}}{R_{2}}
$$

Again, by sign convention, $R_{2}<0$. Adding the two equations, we have

$$
\frac{n_{m}}{s_{o l}}+\frac{n_{m}}{s i_{2}}=\left(n_{l}-n_{m}\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)+\frac{n_{l} d}{\left(s_{i l}-d\right) s_{i l}}
$$

By thin lens approximation ($d \rightarrow 0$), we have

$$
\frac{1}{s_{o}}+\frac{1}{s_{i}}=\left(\frac{n_{l}}{n_{m}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

This is Thin-Lens Equation, or Lensmaker's Formula.
Since $\lim s_{i}=f=\lim s_{o}$, we can write the equation as

$$
\frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f}
$$

where

$$
\frac{1}{f}=\left(\frac{n_{l}}{n_{m}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) .
$$

f is the focal point.

Focal Points and Planes

Figure 5.22 Object and image location for a thin lens.

Transverse Magnification $M_{T}=\frac{y_{i}}{y_{o}}=-\frac{s_{i}}{s_{o}}=-\frac{x_{i}}{f}=-\frac{f}{x_{o}}$

Quantity	Sign	
	+	-
s	Real object	Virtual object
s_{i}	Real image	Virtual image
f	Converging lens	Diverging lens
y_{0}	Erect object	Inverted object
y_{i}	Erect image	Inverted image
M_{T}	Erect image	Inverted image

TABLE 5.3 Images of Real Objects Formed by
 Thin Lenses

Convex				
Object			Image	
Location	Type	Location	Orientation	Relative Size
$\infty>s_{o}>2 f$	Real	$f<s_{i}<2 f$	Inverted	Minified
$s_{o}=2 f$	Real	$s_{i}=2 f$	Inverted	Same size
$f<s_{o}<2 f$	Real	$\infty>s_{i}>2 f$	Inverted	Magnified
$s_{o}=f$		$\pm \infty$		
$s_{o}<f$	Virtual	$\left\|s_{i}\right\|>s_{o}$	Erect	Magnified
Concave				
Object			Image	
Location	Type	Location	Orientation	Relative Size
Anywhere	Virtual	$\begin{aligned} \left\|s_{i}\right\| & <\|f\|, \\ s_{o} & >\left\|s_{i}\right\| \end{aligned}$	Erect	Minified

Longitudinal Magnification

$$
M_{L} \equiv \frac{d x_{i}}{d x_{o}}=-\frac{f^{2}}{x_{o}^{2}}=-M_{T}^{2}
$$

Thin-Lens Combinations

For L_{1},

$$
\frac{1}{s_{i l}}=\frac{1}{f_{1}}-\frac{1}{s_{o l}}
$$

Let $s_{o l}>f_{1}$ and $f_{1}>0$.
For L_{2}

$$
\begin{aligned}
& s_{o 2}=d-s_{i 1} \\
& \frac{1}{s_{i 2}}=\frac{1}{f_{2}}-\frac{1}{s_{o 2}}
\end{aligned}
$$

Thus,

$$
s_{i 2}=\frac{f_{2} d-f_{2} s_{o o} f_{1} /\left(s_{o l}-f_{1}\right)}{d-f_{2}-s_{o f} f_{1} /\left(s_{o l}-f_{1}\right)}
$$

and

$$
M_{T}=M_{T 1} M_{T 2}=\frac{f_{1} s_{i 2}}{d\left(s_{o l}-f_{1}\right)-s_{o o} f_{1}}
$$

Front focal length:

$$
\left.\frac{1}{s_{o l}}\right|_{s_{i 2}=\infty}=\frac{1}{f_{1}}-\frac{1}{d-f_{2}}=\frac{d-\left(f_{1}+f_{2}\right)}{f_{1}\left(d-f_{2}\right)} \Rightarrow b f l=\frac{f_{1}\left(d-f_{2}\right)}{d-\left(f_{1}+f_{2}\right)}
$$

Back focal length:

$$
\frac{1}{\left.s_{i 2}\right|_{s_{o l}=\infty}}=\frac{1}{f_{2}}-\frac{1}{d-f_{1}}=\frac{d-\left(f_{1}+f_{2}\right)}{f_{2}\left(d-f_{1}\right)} \Rightarrow b f l=\frac{f_{2}\left(d-f_{1}\right)}{d-\left(f_{1}+f_{2}\right)}
$$

If $d \rightarrow 0, f=b f l=f f l=\frac{f_{2} f_{1}}{f_{2}+f_{1}} \Rightarrow \frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}$

Stops (5.3)

Aperture stop: any element that determines the amount of light reaching the image.
Field stop: the element limiting the size or angular breadth of the object that can be imaged y the system.

Field Stop: The size of the image plane.

Figure 5.33 Aperture stop and field stop.

Pupils: for determining the light of cone entering the image plane.
Entrance Pupil: the image of the aperture stop as seen from an axial point on the object side through those elements before the stop. Determine the cone of the light entering the image plane with respect to the object.

Exit Pupil: the image of the aperture stop as seen from an axial point on the image side through those elements before the stop. Determine the cone of the light entering the image plane with respect to the image plane.
$E_{x p}$: the point at center of the exit pupil.
$E_{n p}$: the point at center of the entrance pupil.

Chief Ray: any ray from an off-axis object point that passes through the center of the aperture stop. Either this ray or its extending line passes $E_{x p}$ or $E_{n p}$.

