Thin Lenses ➔ Thick Lenses

Paraxial approximation

\[
\sin(\theta) \approx \tan(\theta) \approx \theta
\]

\[
\cos(\theta) \approx 1
\]

See Hecht Ch. 5 and review the following Equations. Refer to lecture given on 10/01 for derivation of the following equations

\[
\frac{1}{f} = \frac{1}{s_0} + \frac{1}{s_i}
\]

\[
x_0x_i = f^2
\]

\[
M_T \equiv \frac{y_i}{y_0} = -\frac{s_i}{s_o}
\]

\[
M_L \equiv \frac{dx_i}{dx_0} = -\frac{f^2}{x_0^2}
\]

“Sign” convention is of paramount importance! (See Hecht Table 5.1, Fig. 5.12, Table 5.2)
Recall: Real and Virtual Images

See also Hecht Table 5.3
Numerical Aperture

\[\text{Numerical Aperture} \quad (NA) = n \sin \theta \]

\[\text{Speed } (f/#) = 1/2(NA) \]
pronounced f-number, e.g.
f/8 means (f/#) = 8.

We will learn that
the spatial resolution limit due to diffraction \(\approx 1.22 \times f \lambda / D = 0.61 \times \lambda / NA \) [Rayleigh Criterion].
When Paraxial Approximation Fails: Ray Tracing + Diffraction

• Databases of common lenses and elements
• Simulate aberrations and ray scatter diagrams for various points along the field of the system (PSF, point spread function)
• Standard optical designs (e.g. achromatic doublet)

• Permit optimization of design parameters (e.g. curvature of a particular surface or distance between two surfaces) vs designated functional requirements (e.g. field curvature and astigmatism coefficients)

• Also account for diffraction by calculating the at different points along the field modulation transfer function (MTF) [Fourier Optics]
Aberrations

- Chromatic
 - is due to the fact that the refractive index of lenses, etc. varies with wavelength; therefore, focal lengths, imaging conditions, etc. are wavelength-dependent

 \[n(\omega) \]

- Geometrical (monochromatic)
 - are due to the deviation of non-paraxial rays from the approximations we have used so far to derive focal lengths, imaging conditions, etc.; therefore, rays going through imaging systems typically do not focus perfectly but instead scatter around the “paraxial” (or “Gaussian”) focus

Departures from the idealized conditions of Gaussian Optics (e.g. paraxial regimes).
Chromatic Aberration

Hecht 6.3.2

\[\frac{1}{f} \approx (n - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]. \]

Different glasses for use in lenses.

Fraunhofer designations.

<table>
<thead>
<tr>
<th>Glass</th>
<th>Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C H</td>
<td>656.3</td>
</tr>
<tr>
<td>D Na</td>
<td>589.2</td>
</tr>
<tr>
<td>F H</td>
<td>486.1</td>
</tr>
<tr>
<td>G' H</td>
<td>434.0</td>
</tr>
</tbody>
</table>
Solutions:
1. Combine lenses (achromatic doublets)
2. Use mirrors

Melles Griot “Fundamental Optics”
Spherical Aberration

Solution I: Aspheric Mirrors or Lenses
Hubble Telescope

It was probably the most precisely figured mirror ever made, with variations from the prescribed curve of only 10 nanometers, it was too flat at the edges by about 2.2 microns. Source: wikipedia
Solution II: Chose a proper shape of a singlet lens for a given image-object distance.

For a given desired focal length, there is freedom to choose one of the radii for a singlet. The spherical aberration and coma depend on the particular choice, so these aberrations can be minimized by the designed form.

\[
\frac{1}{f} \approx (n - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right].
\]

\[
q = \frac{(R_1 + R_2)}{(R_2 - R_1)}
\]

Figure 1.23 Aberrations of positive singlets at infinite conjugate ratio as a function of shape
Lens Selection Guide

http://www.newport.com/Lens-Selection-Guide/140908/1033/catalog.aspx#
Astigmatism
Coma and Deformation

Figure 1.18 **Positive transverse coma**

Figure 1.19 **Field curvature**

Figure 1.20 **Pincushion and barrel distortion**