Propagation of EM Waves

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
 where $\mathbf{E} = \hat{\mathbf{x}} E_0 e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}$

$$\Rightarrow \nabla \times \equiv i\mathbf{k} \times \text{ and } \frac{\partial}{\partial t} \equiv -i\omega$$

$$\Rightarrow \mathbf{B} = \frac{1}{\omega} \mathbf{k} \times \mathbf{E}$$

Vectors **k**, **E**, **B** form a right-handed triad.

Note: free space or isotropic media only

Polarization and Propagation

In isotropic media (e.g. free space, amorphous glass, etc.)

$$\mathbf{k} \cdot \mathbf{E} = 0$$

i.e. $\mathbf{k} \perp \mathbf{E}$

More generally,

$$\mathbf{k} \cdot \mathbf{D} = 0$$

(reminder: in anisotropic media, e.g. crystals, one could have

E not parallel to D)

Linear polarization (frozen time)

Linear polarization (fixed space)

Circular polarization (frozen time)

Linear vs. Circular Polarization

http://en.wikipedia.org/wiki/Polarizer

Working with Polarizers

$$I = \frac{1}{2}c\epsilon_0 E_0^2 \cos^2 \theta = I_0 \cos^2 \theta,$$

Polarization by Reflection

$$\theta_1 + \theta_2 = 90^{\circ},$$

$$n_1 \sin(\theta_1) = n_2 \sin(\theta_2),$$

$$n_1 \sin(\theta_B) = n_2 \sin(90^{\circ} - \theta_B) = n_2 \cos(\theta_B).$$

$$\theta_B = \arctan\left(\frac{n_2}{n_1}\right),$$

Where is the turtle?

Polarized sunglasses

Circularly polarized light in nature

Fig. 1. Photographs of the beetle *C. gloriosa*. (A) The bright green color, with silver stripes as seen in unpolarized light or with a left circular polarizer. (B) The green color is mostly lost when seen with a right circular polarizer.

Morphology and microstructure of cellular pattern of C. gloriosa

Polarization by scattering (Rayleigh scattering/Blue Sky)

FIGURE 8.35a Scattering of polarized light by a molecule.

FIGURE 8.36 Scattering of unpolarized light by a molecule.

Methods for generating polarized light

Linear versus Circular polarization

Circular polarization (linear components)

Circular polarization (fixed space)

Quarter wave plate

Half wave plate

$\lambda/2$ plate

Polarization: Summary and Quiz

Polarization Applets

Polarization Exploration

http://webphysics.davidson.edu/physlet_resources/dav_optics/Examples/polarization.html

3D View of Polarized Light

http://fipsgold.physik.uni-kl.de/software/java/polarisation/index.html

Quiz for the 2nd Optics Lab – Bonus Credit 0.25 pts

