
Summary of the Various Branches of Spectroscopy

Branch	Frequency,	Wavelength	Typical Energy Unit			Typical Radiation	
	Hz		Name	Value in Joules	Phenomenon	Generator	Typical Detector
Static	0-60	{	Joule Calorie	1 4.186		Battery	Ammeter Voltmeter
Low or audio frequency	103-105	3-300 km	kHz	6.62377×10^{-31}	Dielectric absorption	Mechanical	Ammeter Voltmeter
Radio frequency	10 ⁶ -10 ⁸	300-3 m	Joule cm ⁻¹	1.98574×10^{-23}	NQR, NMR, dielectric absorption	Tuned circuit Crystal	Antenna
Microwaves	109-1011	30 cm to 3 mm	MHz	6.62377×10^{-28}	Molecular rotations, ESR	Klystron Magneton Solid State generator	Antenna Crystal Bolometer
Infrared	10^{12} to 3×10^{14}	300–1 μm	cm ⁻¹ kcal/M	1.98574×10^{-23} 4.186×10^{3}	Molecular vibrations	Heat source	Bolometer PbS cell
Visible, ultraviolet	$4 \times 10^{14} \text{ to}$ 3×10^{15}	0.8–0.1 μm	Joule Erg eV MHz	1 1×10^{-7} 1.60207×10^{-19} 6.62377×10^{-28}	Electronic transitions	Incandescent lamp	Photocell
X rays	1016-1019	30-0.03 nm	eV keV	1.60207×10^{-19} 1.60207×10^{-16}	Electronic transitions	Discharge tube	Photocell
γ rays	1019-1022	3×10^{-9} to 3×10^{-12} cm	MeV	1.60207×10^{-13}	Inner shell electronic transitions	heavy element bombardment	Geiger counter Photomultiplier
Low energy, nuclear	1019-1023	3×10^{-9} to 3×10^{-13} cm	MeV	1.60207×10^{-13}	Nuclear energy level transitions	Radioactive nuclei	Scintillation detector
High energy, nuclear	1023-1026	3×10^{-13} to 3×10^{-17} cm	BeV GeV	1.60207×10^{-10} 1.60207×10^{-7}	Strange particle creation	Accelerator (e.g., synchrotron)	Bubble chamber Spark chamber
High-energy cosmic rays	> 10 ²⁵		BeV GeV	1.60207×10^{-10} 1.60207×10^{-7}	Extraterrestrial	Star, magnetic field in galaxy	Extensive shower detector

Figure 3.28 A kink in the E-field lines.

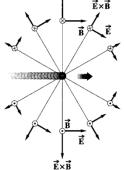
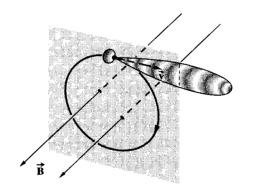



Figure 3.29 The toroidal radiation pattern of a linearly accelerating charge (split to show cross section).

Radiation (Hecht 3.4)

- 1. Linearly Accelerating Charges
- 2. Synchrotron Radiation
- 3. Electric Dipole Radiation

Figure 3.30 Radiation pattern for an orbiting charge.

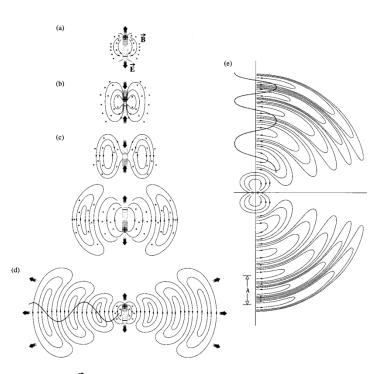
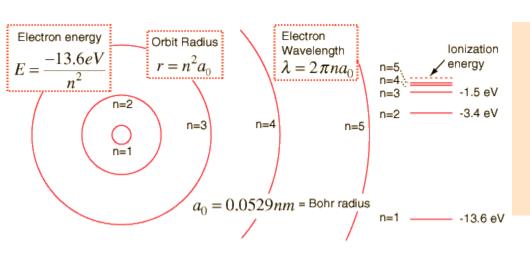
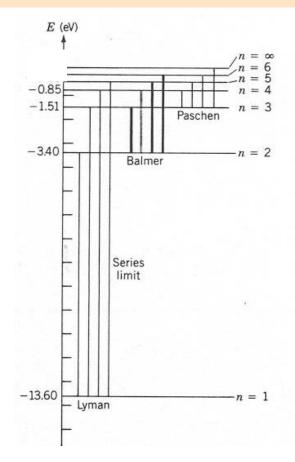
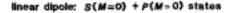



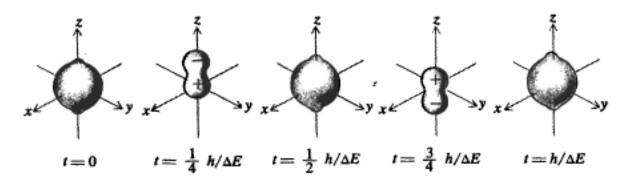
Figure 3.32 The E-field of an oscillating electric dipole.

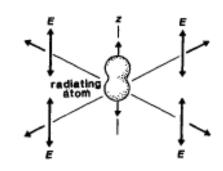
Electronic transitions and Bohr Model


A downward transition involves emission of a photon of energy:

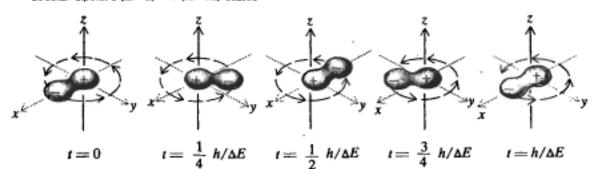
$$E_{\text{photon}} = h v = E_2 - E_1$$

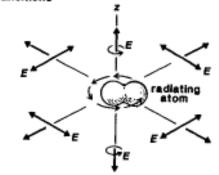

Given the expression for the energies of the hydrogen electron states:


$$hv = \frac{2\pi^2 me^4}{h^2} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = -13.6 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \text{eV}$$

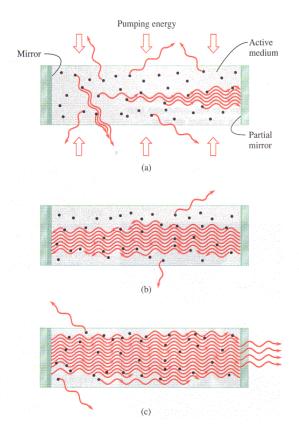


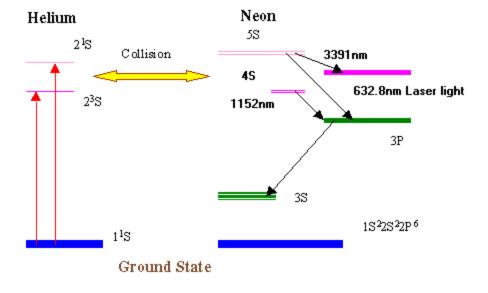
Graphical ("classical") description of optical transitions




transitions

circular dipole; S(M=0) + P(M=±1) states




σ transitions

HeNe Lasers

