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What is a wave?

A wave is anything that moves.

To displace any function f(x) to the 
right, just change its argument from 
x to x-a, where a is a positive 
number.

If we let a = v t, where v is positive 
and t is time, then the displacement 
will increase with time.

So               represents a rightward, 
or forward, propagating wave.

Similarly,                represents a 
leftward, or backward, propagating 
wave.

v will be the velocity of the wave.
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The one-dimensional wave equation
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The one-dimensional wave equation for scalar (i.e., non-vector) 
functions, f:

where v will be the velocity of the wave.

( , ) ( v )f x t f x t= ±

The wave equation has the simple solution:

where f (u) can be any twice-differentiable function.



Proof that f (x ± vt) solves the wave equation

Write f (x ± vt) as  f (u), where u = x ± vt.   So               and 

Now, use the chain rule:

So                    ⇒ and                         ⇒  

Substituting into the wave equation:
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The 1D wave equation for light waves

We’ll use cosine- and sine-wave solutions:

or        

where:
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( , ) cos[ ( v )] sin[ ( v )]E x t B k x t C k x t= ± + ±

( , ) cos( ) sin( )E x t B kx t C kx tω ω= ± + ±
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where E is the 
light electric field

The speed of light in 
vacuum, usually called 
“c”, is 3 x 1010 cm/s.



A simpler equation for a harmonic wave:

E(x,t) = A cos[(kx – ωt) – θ]

Use the trigonometric identity:

cos(z–y) = cos(z) cos(y) + sin(z) sin(y)

where z = kx – ω t and y = θ to obtain:

E(x,t) =  A cos(kx – ωt) cos(θ) +  A sin(kx – ωt) sin(θ)

which is the same result as before, 

as long as:
A cos(θ)  =  B and    A sin(θ)  =  C

( , ) cos( ) sin( )E x t B kx t C kx tω ω= − + −
For simplicity, we’ll 
just use the forward-
propagating wave.



Definitions: Amplitude and Absolute phase

E(x,t) = A cos[(k x – ω t ) – θ ]

A = Amplitude
θ = Absolute phase (or initial phase)

π

kx



Definitions

Spatial quantities:                                                 

Temporal quantities:



The Phase Velocity

How fast is the wave traveling?  

Velocity is a reference distance
divided by a reference time.

The phase velocity is the wavelength / period:   v =  λ / τ

Since ν = 1/τ :

In terms of the k-vector, k = 2π / λ, and 
the angular frequency, ω = 2π / τ, this is:

v = λ v 

v = ω / k 



The phase is everything inside the cosine.

E(x,t) = A cos(ϕ), where ϕ = k x – ω t – θ

ϕ = ϕ(x,y,z,t) and is not a constant, like θ !

In terms of the phase,

ω =  – ∂ϕ /∂t

k =  ∂ϕ /∂x
And

– ∂ϕ /∂t
v =  –––––––

∂ϕ /∂x

The Phase of a Wave

This formula is useful 
when the wave is 
really complicated.



Tacoma Narrows Bridge

1. The animation shows the Tacoma Narrows Bridge shortly before its collapse. 
What is its frequency?
A .1 Hz
B .25 Hz
C .50 Hz
D 1 Hz

2. The distance between the bridge towers (nodes) was about 860 meters 
and there was also a midway node. What was the wavelength of the standing 
torsional wave?
A 1720 m
B 860 m
C 430 m
D There is no way to tell.

3. What is the amplitude?
A 0.4 m
B 4 m
C 8 m
D 16 m

Animation: http://www.youtube.com/watch?v=3mclp9QmCGs

http://www.youtube.com/watch?v=3mclp9QmCGs�


Complex numbers

So, instead of using an ordered pair, (x,y), we write:

P  =  x + i y
=  A cos(ϕ) +  i A sin(ϕ)

where i =   (-1)1/2

Consider a point,
P = (x,y), on a 2D 
Cartesian grid.

Let the x-coordinate be the real part 
and the y-coordinate the imaginary part 
of a complex number.



Euler's Formula

exp(iϕ)  =  cos(ϕ) + i sin(ϕ)

so the point, P = A cos(ϕ) + i A sin(ϕ), can be written: 

P =  A exp(iϕ)

where

A =  Amplitude

ϕ =  Phase



Proof of Euler's Formula

Use Taylor Series:

2 3 4

2 4 3

exp( ) 1 ...
1! 2! 3! 4!

1 ... ...
2! 4! 1! 3!

cos( ) sin( )

i ii

i

i

ϕ ϕ ϕ ϕϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

= + − − + +

   
= − + + + − +   

   
= +

2 3

( ) (0) '(0) ''(0) '''(0) ...
1! 2! 3!
x x xf x f f f f= + + + +

exp(iϕ)  =  cos(ϕ) + i sin(ϕ)

2 3 4

2 4 6 8

3 5 7 9

exp( ) 1 ...
1! 2! 3! 4!

cos( ) 1 ...
2! 4! 6! 8!

sin( ) ...
1! 3! 5! 7! 9!

x x x xx

x x x xx

x x x x xx

= + + + + +

= − + − + +

= − + − + +

If we substitute x = iϕ
into exp(x), then:



Complex number theorems
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More complex number theorems
Any complex number, z, can be written:

z =  Re{ z }  +  i Im{ z }
So

Re{ z }  =  1/2  ( z + z* )
and

Im{ z } =  1/2i ( z – z* )

where z* is the complex conjugate of z ( i → –i )

The "magnitude," | z |, of a complex number is:

| z |2 =  z z* =  Re{ z }2 + Im{ z }2

To convert z into polar form, A exp(iϕ): 

A2 =  Re{ z }2 + Im{ z }2

tan(ϕ)  =  Im{ z } / Re{ z }



We can also differentiate exp(ikx) as if 
the argument were real.
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Proof :

But , so :



Waves using complex numbers

The electric field of a light wave can be written:

E(x,t) =  A cos(kx – ωt – θ)

Since  exp(iϕ) = cos(ϕ) + i sin(ϕ), E(x,t) can also be written:

E(x,t)  =  Re { A exp[i(kx – ωt – θ)] }

or
E(x,t)  =  1/2 A exp[i(kx – ωt – θ)] + c.c.

where "+ c.c." means "plus the complex conjugate of everything 
before the plus sign."

We often 
write these 

expressions 
without the 

½, Re, or 
+c.c.



Waves using complex amplitudes
We can let the amplitude be complex:

where we've separated the constant stuff from the rapidly changing stuff.  

The resulting "complex amplitude" is: 

So:

( ) ( )
( ) { } ( ){ }
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E x t i k ti xA

ω θ

ωθ

= − −  
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0 exp( )     E A iθ= − ←


(note the " ~ ")

( ) ( )0, expE x t E i kx tω= −
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How do you know if E0 is real or complex?

Sometimes people use the "~", but not always.
So always assume it's complex.

As written, this entire 
field is complex!



Complex numbers simplify waves!

This isn't so obvious using trigonometric functions, but it's easy
with complex exponentials:

1 2 3

1 2 3

( , ) exp ( ) exp ( ) exp ( )
              ( ) exp ( )

totE x t E i kx t E i kx t E i kx t
E E E i kx t

ω ω ω
ω
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   
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where all initial phases are lumped into E1, E2, and E3.

Adding waves of the same frequency, but different initial phase, 
yields a wave of the same frequency.



is called a plane wave.

A plane wave's wave-fronts are equally 
spaced, a wavelength apart.

They're perpendicular to the propagation 
direction.

Wave-fronts 
are helpful 
for drawing 
pictures of 
interfering 

waves.

A wave's wave-
fronts sweep 
along at the 

speed of light.

A plane wave’s contours of maximum field, called wave-fronts or 
phase-fronts, are planes.  They extend over all space.

0 exp[ ( )]E i kx tω−


Usually, we just 
draw lines; it’s 

easier.



Localized waves in space: 
beams
A plane wave has flat wave-fronts throughout 
all space.  It also has infinite energy.
It doesn’t exist in reality.

Real waves are more localized.  We can approximate a realistic wave 
as a plane wave vs. z times a Gaussian in x and y:
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Localized waves in time: 
pulses

If we can localize the 
beam in space by 
multiplying by a 
Gaussian in x and y, we 
can also localize it in 
time by multiplying by a 
Gaussian in time.
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E

This is the equation for a laser pulse.

t

exp(-t2)



Longitudinal vs. Transverse waves

Motion is along the 
direction of propagation—
longitudinal polarization

Motion is transverse to the 
direction of propagation—
transverse polarization

Space has 3 dimensions, of which 2 are transverse to the 
propagation direction, so there are 2 transverse waves in addition 
to the potential longitudinal one.
The direction of the wave’s variations is called its polarization.

Transverse:

Longitudinal:



Vector fields
Light is a 3D vector field.

A 3D vector field          
assigns a 3D vector (i.e., an 
arrow having both direction 
and length) to each point in 
3D space.

( )f r




A light wave has both electric and magnetic 3D vector fields:

Wind patterns: 2D vector field

And it can propagate in any direction.



Div, Grad, Curl, and all that

Types of 3D vector derivatives:

The Del operator:  

The Gradient of a scalar function  f :

The gradient points in the direction of steepest ascent.

, ,
x y z

 ∂ ∂ ∂
∇ ≡  ∂ ∂ ∂ 



, ,f f ff
x y z

 ∂ ∂ ∂
∇ ≡  ∂ ∂ ∂ 



If you want to
know more about
vector calculus,
read this book!

Div, Grad, Curl, and All That: 
An Informal Text on Vector 
Calculus , by Schey



Div, Grad, Curl, and all that

The Divergence of a vector function:

yx z
ff ff

x y z
∂∂ ∂

∇ ⋅ ≡ + +
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


The Divergence is nonzero 
if there are sources or sinks.

A 2D source with a 
large divergence:

Note that the x-component of this function changes rapidly in the x 
direction, etc., the essence of a large divergence.

x
y



Div, Grad, Curl, and more all that
The Laplacian of a scalar function :

The Laplacian of a vector function is the same, 
but for each component of f:
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The Laplacian tells us the curvature of a vector function.



The 3D wave equation for the electric 
field and its solution

or

whose solution is:

where

and
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A light wave can propagate in any 
direction in space. So we must allow 
the space derivative to be 3D:
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The 3D wave equation for a light-wave 
electric field is actually a vector equation.

whose solution is:

where:
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And a light-wave electric field can point in any direction in space:

0 0 0 0( , , )x y zE E E E=


   

Note the arrow over the E.



We must now allow the field E and its complex field amplitude to 
be vectors:

Vector Waves

( ) ( ){ }0, Re expE r t E i k r tω = ⋅ − 
 

 





0 (Re{ } Im{ }, Re{ } Im{ }, Re{ } Im{ })x x y y z zE E i E E i E E i E= + + +




The complex vector amplitude has six numbers that must be 
specified to completely determine it!

0E


x-component y-component z-component



Boundary Conditions

Often, a wave is constrained 
by external factors, which we 
call Boundary Conditions.

For example, a guitar string is 
attached at both ends.

In this case, only certain 
wavelengths/frequencies are 
possible.

Here the wavelengths can be:

λ1,  λ1/2,  λ1/3,  λ1/4, etc.

Node Anti-node
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