The cosmic microwave background radiation —18 Feb 2010

- Midterm exam
 - Key ideas. How to do better
- Cosmic microwave background radiation
 - Why is the existence of the CBR important for the history of the universe?
 - Important events
- Angular scale of fluctuations in the CBR
 - What is the physical length of the fluctuations? What is the density parameter of universe seen in the CBR? What is the age of the universe?

◀ | ►

Midterm exam

• Statistics

Quartiles:15.5, 18, 22.75Top score:33/35

• Key ideas, misconceptions

 Q1, on finding g^{θθ} a^μ is not the same as a_μ.

• Q2a, on finding p^{μ} for a photon on a radial path

• Q2b, on finding the energy measured by an observer.

• Q3, on a clock on Earth

• Q4,

< | ►

The cosmic microwave background radiation —18 Feb 2010

Penzias & Wilson, 1965, "A measurement of the excess antenna temperature at 4080Mc/s," ApJ 142, 419. "The excess temperature is ... isotropic, unpolarized, and free from seasonal variation."

Why is this radiation with a temperature of 3K important for the history of the universe? DPRW explained.

Dicke, Peebles, Roll, & Wilkinson, 1965, "Cosmic Black-body Radiation," ApJ 142, 414. "Could the universe have been filled with black-body radiation from this possible high-temperature state?

Black-body radiation

A wavelength characterizes black body radiation

$$\lambda = \frac{h c}{k T}.$$

Alternatively, Wien's Law. Peak of the spectrum in wavelength is

 $\lambda_{\text{peak}} = 2.9 \text{ mm} \frac{1 K}{T}$

Because wavelengths expand with the universe, the wavelength of the black-body radiation increases with time and <u>the tempera-</u> <u>ture decreases</u>.

The temperature of the radiation changes as a^{-1} .

Q: Why is this significant for the history of the universe?

The mass-energy density changes

 $\rho_{\rm radiation} \sim a^{-4}$

whereas

 $\rho_{\rm pressureless\ matter} \sim a^{-3}$

 a^{-4} always beats a^{-3} for small enough a. At early times, the radiation determines the history of the universe.

< | ►

Dicke, Peebles, Roll, Wilkinson

< | ►

Important events in the history of the universe

- "Recombination"
 - Universe changes from ionized to neutral at T=3000K. $p + e^- \rightarrow H$
 - Q: What is the expansion parameter at recombination?
 - Q: The ionization energy of hydrogen is 13.6eV=13.6×11600K/eV=160,000K. Why does recombination occur at such a low temperature?
 - The cross section for scattering for free electrons is much higher than for bound electrons.
 - The universe was opaque before recombination.

The cosmic microwave background is a snapshot of the universe at recombination at 400, 000 years.

- Helium forms. The early universe was too hot for nuclei (other than n and p) to exist.
 - At $a = 10^{-9}$, the universe became cool enough for $n + p \rightarrow {}^{2}H$. Then ${}^{4}He$ and trace amounts of ${}^{7}Li$ and ${}^{3}He$ form.

◀ | ►

2.7 / 11 600 $\times\,10*{}^{\star}9$

 $\texttt{2.32759}\times\texttt{10}^{\texttt{6}}$