Riemann-Christoffel curvature tensor—23 Mar 2010

e Reading: Weinberg Gravitation & Cosmology, §6 and Hartle §21.3
e Outline

e Finish covariant derivatives

e Riemann-Christoffel curvature tensor

e Bianchi identity
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Covariant derivative of a contravariant vector

How do you take derivatives of tensors?

We already found that the equation of motion is

The terms ‘ZLT and I'? 5, uP u” are not tensors. Proof: I'®g, uf u” is zero in a gravity-free frame. If it were a tensor, it must be zero

in all frames.

We derived the equation of motion by differentiating the 4-velocity.
Rewrite
du® dxP ou” B ou°
= —_— = U s
dr dr  gxP 9xB

and insert to get
au®
uﬁ(ﬁ +T%, uV) =0.
This says: In the parenthesis is the change in u® in the x# direction. Contracting it (taking the dot product) with u? results in 0.

.. . au® .
Contraction is a tensor operation. ?lﬁ + %, U7 is a tensor.
OoX

For any contravarient vector A%,

6All’
VﬂAQ = W + F‘Iﬂy AY

is a tensor. This is called the covariant derivative. Another notation:

A'p =A% g+ T, A

Q: Is A%.5 = Vg A” covariant or contravarient in the index 5?

XXX
Example: For 2-dimensional polar coordinates, the metric is
ds? = dr? + r2 d¢?
The non-zero Christoffel symbols are (8.17)
Ty =—r

g, =1l =1/r.

AI';r = Ar,r
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A=Ay -1 A’
Al =A9 +1/r A
Alg=A%g+1/r AT
The covariant derivative of the r component in the r direction is the regular derivative. If a vector field is constant, then A", =

The covariant derivative of the r component in the 8 direction is the regular derivative plus another term. Even if a vector field is
constant, A"y # 0. The I' term accounts for the change in the coordinates.

The idea of a covariant derivative of a vector field A in the direction a. Is this a good definition?
VaA? = limeo Z[AX + €a) — A(X)] 222

However, the components of A(x + e a) may be different even if the vector is the same, because the coordinates are changing. We
must move A(x + € a) back to x before comparing. Moving is called parallel transporting. This is what the T" term does.

V. A? =lim, % {parallel transport[A(x + e a)] — A(X)}

Q: Simplicio: Covariant derivatives are irrelavant. | want to know about gravity. In what way is Simplicio mistaken?

< | »
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Covariant derivative of a tensor
A contravariant tensor is A# B¥. The covariant derivative of it is
(A# B”)., = AK(BY)., + (AH)., BY
v y H
A#(BY o + T, BF) + BY(A#  + T, AF)
(AR B"), + A BPTY + B APTY,

Therefore the covariant derivative of a contravariant tensor is

T =TH o+ TH T, + TR T, |

There is one Christoffel symbol for each upper index.

The covariant derivative of a covariant vector is

Aais=Pag—T7ap Ay

Proof: Find the covariant derivative of A, A%.
The covariant derivative of a mixed tensor: Put in +I" for each upper index and —T" for each lower index.
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How to measure curvature

Q: In what object is gravity encoded? What does the Equivalence Principle say?

Q: Can you measure curvature by looking at a point?
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How to measure curvature

Q: In what object is gravity encoded? What does the Equivalence Principle say? Gravity is encoded in a general coordinate
transformation.

Q: Can you measure curvature by looking at a point? No. The equivalence principle says that gravity can be removed in a small
region of space-time by a coordinate transformation. You must explore a region that is not small.

Q: How to detect curvature of the Earth's surface.
Carry a vector, which points east, from the north pole to the equator.

Consider a vector field A,. Move from point P to Q to R. Move from P to S to R. Compare.
S R

P a
The change in A in going from P to Q is
(9A7 (03
dA,pq = (axn ) a
Q: Why is this not a tensor equation?

ins4]:= FiIg[] = Module[{p, g, F, S, X},
p={0,0};09={1,0};s={.2,1};r={1.2, 1};
X={p,q, r, s};

ListPlot[x, PlotStyle » {PointSize - Large},
Epilog » {Text["P", p, {-3, -1}], Text["Q", q, {2, -1}], Text["S", s, {-2, 1}],
Text["R", r, {3, 1}], Text["a", Meane {X[1], X[21}, {0, -1}1,
Text["b", Meane {X[1], X[4T}, {-2-5, 0}], Arrow[{X[1], X[21}]1, Arrow[{X[2], XI31}1,
Arrow[ {X[1], X[40}]1, Arrow[ {xX[4], X[31}1}, bs, Axes -» None, ImageSize -» 160]
1

inss)= Fig[]

out[55]= b
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How to measure curvature

Consider a vector field A,. Move from point P to Q to R. Move from P to S to R. Compare.
S R

P a
The change in A, in going fromP to Q is

d Ao =55 )a"
Q: Why is this not a tensor equation? The derivative of a vector field is not a tensor. Use the covarient derivative
VoA, = LT, A,
This is a tensor equation:
dA,pg=V,A,a"
The change in A in going P-Q-R is
d Ay por = V5(VaAy)a” b
The change in A in going P-S—>R is
d A, psr = Vo (VsA,))a® bs
The change in a round trip PoQ—-R—>S—P is
d Aypor = d Aypsr = [V5(Va Ay) = Va VA, )| a” P

Q: In MAL, | learned that % = a;% Why doesn't the quantity in brackets [] = 0?
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How to measure curvature

Consider a vector field A,. Move from point P to Q to R. Move from P to S to R. Compare.
S R

P a
The change in A, in going fromP to Q is

oA,
d AYPQ = ((’)X“ ) a(l/

Q: Why is this not a tensor equation? The derivative of a vector field is not a tensor. Use the covarient derivative
VoA, = LT, A,

The change in a round trip P>Q—->R—-S—P is
d Aypor —d Aypsr = [V5(Va Ay) = Vo (V5 A, )| a” b

% = a;%' Why doesn't the quantity in brackets [] = 0? The parts involving partial derivatives of the

vector A, is 0. The remaining parts involve the Christoffel symbol times A. Therefore, the nonzero part can be written as
d A, pgr — d A, psr = Ay R7,qpa% bP.

What does this say?

Q: Inaround trip, a vector field A, changes by the contraction of what?

Q: In MA1, I learned that
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Riemann-Christoffel curvature tensor

Consider a vector field A,. Move from point P to Q to R. Move from P to S to R. Compare.
S R

P a
The change in A, in going fromP to Q is

dApr:(aA’)a"

ox®

Q: Why is this not a tensor equation? The derivative of a vector field is not a tensor. Use the covarient derivative
VoA, = LT, A,
The change in a round trip P>Q—->R—-S—P is
d Aypor —d Aypsr = [V5(Ve A)) = Ve (V5 A,)a” bP
Q: In MAL, | learned that % = a;%' Why doesn't the quantity in brackets [] = 0? The parts involving partial derivatives of the
vector A, is 0. The remaining parts involve the Christoffel symbol times A. Therefore, the nonzero part can be written as

d Ay PQR — d Ay psr = —A, R(ryalg a®bf

What does this say?
Q: Inaround trip, a vector field A, changes by the contraction of A, a tensor R, the position change &, and the position change b.

The tensor R7,4is called the Riemann-Cristoffel curvature tensor.
Q: If I swap a and g, is R the same? R”,,,s = R7,5,? What are the last two indices for?

Calculating R7op:

9Ay
Vp(Va ) = V(2 ~ %50 A
A, 9 AA,

0
_ _ 910 _yo 9 1o (&
- T oxP 50 =T oxP Ar =T B ( ox* AO—)

oxP ox*
We can ignore the partial derivatives of A, because in the end only the terms in A survive.

It is possible to show that

9 9
R7 e = X %5 - v 70 + T70e 5 = T g Ty
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Ricci tensor and curvature scalar, symmetry

The Ricci tensor is a contraction of the Riemann-Christoffel tensor
Rys = R%ap.

The curvature scalar is the contraction of the Ricci tensor
R= gﬁy Ryﬁ.

Symmetry properties of the Riemann-Christoffel tensor Rgys = 9ao R7 s
1) Symmetry is swapping the first and second pair
Rapys = Rysap
2) Antisymmetry in swapping first pair or second pair
Rogys = ~Rpays = —Rapsy
3) Cyclicity in the last three indices.
Ragys + Raggy + Raysp =0
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Example: Surface of a 2-d sphere

The metric is
ds® = a?(dé? + sin 6 dg?).

The nonzero parts of the Christoffel symbol are
%4 =—sinfcos
[%gy =T?49=—sinf cos o

The Riemann-Christoffel tensor is in general
R7yap = % 75— % 70+ T70e I = T7 e I'0

Q: Compute one non-zero component (no sum)
Rggs = ... =sin? 6

Q: Compute (no sum)
R% g

Q: Compute the Ricci tensor. Answer:
Rlg=R%y=a?
Ry =R%=0

Q: Compute the curvature scalar R
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Bianchi identity

Bianchi's identity: The curvature induced change of a vector carried over the 6 faces of a cube is zero.
Proof: Each side is traversed twice (or 4 times) in opposite directions.

In equation form:
The change on the y-z at face at x is
d Ar(X) = —As R7, y,(X) dy dz
The change on the y-z face at x + dx is
dA;(x+dx)=—-AsR7,y,(x + dx) dy dz
The change over both faces is
dA;(x+dx)— dAs(X) = —-As VxR, y, dx dy dz
Q: Is VxR7, y, the same as ;—x R7,y2?
Traverse the face at x + dx in the outward-pointing sense and the face at x in the outward-pointing sense.
The change over all 6 faces is
Ay dxdy dz (VxR7,y; + VyR7,,x + V,R7, 4y)

and since each side in traversed in opposite directions, it is zero.

We chose X, y, and z, but we could have also chosen t for one of the directions. Therefore, we have proved the Bianchi identity,

VaR% gy + V4R 1y + Vo R0 = 0

A contracted form of the Bianchi identity is:

V(R = g R)=0
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inf103):= Fig[] = Module[{}, Show[Graphics3D[{{Opacity[-2], Cuboid[]},
Arrow[{{.1, .1, 1.1}, {.9, .1, 1.1}, {.9, .9, 1.1}, {.1, .9, 1.1}, {.1, .2, 1.1}}1,
Arrow[Reversee {{.1, .1, .1}, {.9, .1, .1}, {.9, .9, .1}, {.1, .9, .1}, {-1, .2, .1}}]1,
Arrow[{{.1, .1, .1}, {.1, .1, 1.1}}],
Arrow[{{-1, -2, 1.1}, {-1, -2, -2}}1}1, ImageSize » 200]]

inf041:= Fig[]

out[104]=



