Black holes

-20 Apr 2010

- Outline
 - Hints of strangeness from our study of the orbits in the Schwarzscild metric
 - Eddington-Finkelstein coordinates for the Schwarzschild metric (§12). (today)
 - Stellar collapse (§24)
 - Observations of black holes
 - Radiation from black holes

Hints of strangeness

The Schwarzschild metric with the usual coordinate system is

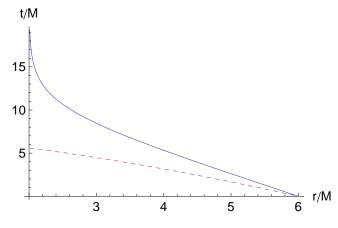
$$ds^2 = -\Big(1 - \frac{2M}{r}\Big)\,dt^2 + \Big(1 - \frac{2M}{r}\Big)^{-1}\,dr^2 + r^2\Big(d\theta^2 + \sin^2\theta\,d\phi^2\Big).$$

■ Strangeness #1

Q: The time coordinate is t, and the coordinates r, θ , and ϕ are spatial coordinates for all r > 0. True or false?

■ Strangeness #2

In Homework 3, Problem 3, we found that for a radial orbit the proper time and coordinate time to fall radially from r = 6 M.



Caption: The proper time (purple, dashed) and coordinate time (blue) to fall from 6 M to r.

An observer gets reports from a guy falling radially into a black hole. One report sent at r = 6M says, "I started by clock." The next report said, "I am passing r = 3M. The time on my watch is [garbled]."

Q: What was the report sent at r = 3 M?

Q: Sagredo: "The coordinate system is singular at r = 2M. I can fix that by changing my coordinate system." Simplicio: "That might make the proper time singular." Is Simplicio's concern justified?

Eddington-Finkelstein coordinates

Consider radial light rays.

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} = 0.$$

I can write

$$dt = \pm dr \left(1 - \frac{2M}{r}\right)^{-1} = \pm d\left(r + 2M \log \left| \frac{r}{2M} - 1 \right|\right).$$

Let
$$r^* = r + 2M \log \left| \frac{r}{2M} - 1 \right|$$
.

For incoming light rays, dr < 0. I choose the – sign. Then $d(t + r^*) = 0$.

For outgoing light rays, I choose the + sign. Then $d(t - r^*) = 0$.

Define a new coordinate system (v, r), where

$$v \equiv t + r^* = t + r + 2M \log \left| \frac{r}{2M} - 1 \right|$$

This coordinate system has the property that radial incoming light rays are at v = constant.

The metric is

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dv^{2} + 2dvdr + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

There is no longer a singularity at r = 2 M.

Consider the radial light rays. $d\theta = d\phi = 0$.

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dv^{2} + 2 dv dr = 0$$

One solution is $dv \neq 0$. Then

$$\frac{d\,r}{dv} = \frac{1}{2}\left(1 - \frac{2\,M}{r}\right)$$

$$v = 2r + 4M \log \left| \frac{r}{2M} - 1 \right| + \text{const}$$

At r > 2M, $\frac{dr}{dv} > 0$. This is an outgoing light ray.

Ar r = 2M, $\frac{dr}{dv} = 0$. The light ray is not progressing.

At r < 2M, $\frac{dr}{dv} < 0$. The light ray is moving to smaller r.

The other solution is dv = 0. We want something to change for light rays. Define $\tilde{t} = v - r$.

For this solution, $\tilde{t} = -r + \text{const.}$ These are incoming light rays.

The metric is

Caption: Radial light rays for solution dv = 0 (blue) and $dv \neq 0$ (purple). Also shown are the world lines of three apples falling radially (taupe) from rest at ∞ , which cross events A, B, and C. The coordinates are (\tilde{t}, r)

Q: At r > 2M, how are the light rays of the two radial solution different? Consider two radial light pulses sent out at event B.

Q: At r < 2M, how are the light rays of the two radial solution different? Consider two radial light pulses sent out at event A.

Q: For r < 2M, is dr time-like or space-like? Eg, is the separation between $(\tilde{t}, r, \theta, \phi)$ and $(\tilde{t}, r + dr, \theta, \phi)$ time-like or space-like? Same question for dt. Look at the region near event A.