- 1. The angle subtended by a yardstick. Suppose there is a length l that does not change with time—it is a "yardstick," and further suppose that one can observe it at cosmological distances. In class we found that the angle subtended by this length $\theta = l/(ra)$, where a is expansion parameter of the epoch when the light was emitted and r is the comoving coordinate. Let $\Omega = 2$.
 - (a) Show that $\theta \to l/d$ for $a \to 1$, where d is the distance.
 - (b) Give a physical argument why $\theta \to \infty$ as $a \to 0$.
- 2. Can I see the back of my head? Let $\Omega_0 = 2$. The universe will stop expanding and collapse again for this value of Ω_0 .
 - (a) (5 pts.) What is the expansion parameter $a_{\rm m}$ at which the expansion stops?
 - (b) What is the comoving coordinate of a galaxy that emitted light that we see at the epoch $a_{\rm m}$?
 - (c) What is the comoving coordinate of a galaxy that emitted light that we see at the epoch for which a = 0 for the second time?
 - (d) Can I see the back of my head?
- 3. Simplicio reasons, "For $\Omega_0 = 0$, the comoving coordinate of a source that we see now at the telescope is $rH_0 = \frac{1}{2}(a^{-1} a)$. If a is very small, r approaches ∞ . The light travels more than c times the age of the universe. Einstein or Friedmann must be wrong, since the universe has a finite age."
 - (a) Explain how we can see so far if $\Omega \ll 1$.
- 4. The form of the Robertson-Walker metric that we have used is

$$ds^{2} = -dt^{2} + a(t)^{2} \left[\frac{dr^{2}}{(1 - r^{2}/r_{0}^{2})} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right].$$

An alternative metric is

$$ds^{2} = -dt^{2} + a(t)^{2} \left[dr^{2} + r_{0}^{2} \sin^{2}(r/r_{0}) (d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right].$$

(a) Interpret the coordinates (t, r, θ, ϕ) for the standard and alternative metrics. Which coordinates measure true time and true distance? Does a galaxy stay at the same spatial coordinate for both metrics? Does the universe expand for both metrics?

- (b) Consider a 4-vector $x^{\mu} = (dt, dr, d\theta, d\phi)$. Find x_{μ} for each metric. Why are some components of x^{μ} and x_{μ} the same and some different?
- 5. Problem 18.2 in Hartle.
- 6. Problem 18.3 in Hartle.
- 7. Problem 18.20 in Hartle.