In the space outside a spherical mass M at the origin, the distance ds between two nearby events is

$$ds^{2} = -(1 - 2M/r)dt^{2} + (1 - 2M/r)^{-1}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta \ d\phi^{2}).$$

- 1. (5 pts.) For the Schwartzschild metric, $g_{\theta\theta} = r^2$. Find $g^{\theta\theta}$. You must show your reasoning in sentences.
- 2. A photon moves radially towards a star of mass M. Its 4-momentum at ∞ is $p^{\mu} = (E, -E, 0, 0)$.
 - (a) (5 pts.) Find its 4-momentum p^{μ} at r.
 - (b) (5 pts.) Find the energy that a person would measure in a lab at r.
- 3. A person on earth determines the length of an earth year to be t_e and a stationary person far, far away determines the earth year to be t_{∞} . The mass of the sun $M_{\rm sun} = 1.5$ km. The mass of the earth $M_{\rm earth} = 4.3 \times 10^{-6}$ km. The distance between the earth and sun, an astronomical unit AU = 1.5×10^8 km. The radius of the earth $R_{\rm earth} = 6.4 \times 10^3$ km. The orbital speed of earth is 0.001.
 - (a) (5 pt.) What are the effects that make t_e and t_{∞} different?
 - (b) (5 pt.) Compute $t_e/t_{\infty} 1$.
- 4. We derived the equation of a mass in orbit around a star of mass M,

$$\frac{e^2 - 1}{2} = \frac{1}{2} \left(\frac{dr}{d\tau}\right)^2 + \frac{l^2}{2r^2} - \frac{M}{r} - \frac{l^2M}{r^3},$$

where e and l are constants specific to the orbit.

- (a) (5 pts.) Show that the minimum angular momentum for an orbit where r goes in and turns around is $l = M\sqrt{12}$.
- (b) (5 pts.) For objects that are moving at v = 0.001 at $r = \infty$, find the cross section for capture by a black hole of mass M. (The cross section for capture is defined to be the area of a plane at $r = \infty$ for which objects moving perpendicular to the plane are captured.)